The limit-2 case of a second-order differential system

PRABIR KUMAR SENGUPTA
Department of Pure Mathematics, University of Calcutta Calcutta 700 019.

Received on June 26, 1984.

Abstract

A technique is developed for identifying the system

$$M [\Psi] = \left(\begin{array}{cc}
- \frac{d}{dx} \left(p \frac{d}{dx} \right) + q_1 & q_2 \\
q_2 & - \frac{d}{dx} \left(r \frac{d}{dx} \right) + q_1
\end{array} \right) \quad \Psi = \lambda \Psi, \lambda \in \mathbb{C}
$$

to be in the limit-2 case at infinity

Key words: Limit-2 case at infinity, Hilbert space, spectral theory, Lebesgue integrable, linear manifold, bilinear form

I. Introduction

Let M denote the formally symmetric second-order vector-matrix differential expression given by

$$M [\Psi] = \left(\begin{array}{cc}
- \frac{d}{dx} \left(p \frac{d}{dx} \right) + q_1 & q_2 \\
q_2 & - \frac{d}{dx} \left(r \frac{d}{dx} \right) + q_1
\end{array} \right) \quad \Psi
$$

(1.1)

Ψ being a complex-valued vector function $\Psi = (f, g)^T$, suitably differentiable on the interval $(0, \infty)$ and where the coefficients p, r and q_j $(j = 1, 2, 3)$ satisfy the following conditions:
(i) \(p(x), r(x) \) are real-valued and positive for all \(x \) on \((0, \infty)\) and are absolutely continuous on all compact sub-intervals of \((0, \infty)\).

(ii) \(q_j (j = 1, 2, 3) \) are real-valued and continuous on \((0, \infty)\).

The Hilbert space \(H \) in which the spectral theory of \(M \) is developed is that of complex-valued vector-functions \(\Psi = (f, g) \) such that

\[
\int_0^\infty \left\{ |f|^2 + |g|^2 \right\} \, dx < \infty
\]

or, equivalently, each of \(\text{Re}(f), \text{Re}(g), \text{Im}(f), \text{Im}(g) \) is square-integrable on \((0, \infty)\); we express these by writing \(\text{Re}(f), \text{Re}(g), \text{Im}(f), \text{Im}(g) \in L^2(0, \infty) \). The inner product of two vectors \(\Psi = (f, g) \) and \(\Phi = (\Psi', \Phi') \) is defined by

\[
(\Psi, \Phi) = \int_0^\infty (f\overline{\mu} + g\overline{\nu}) \, dx.
\]

It is known [See Chakravarty\(^1\), Sengupta\(^2\), Naimark\(^3\) (§ 17.5 VII) and Glazman\(^4\) (Ch. I. § 13)] that the differential system

\[
M[\Psi] = \lambda \Psi, \quad \text{Im}\lambda \neq 0
\]

possesses at least two and at most four linearly independent solutions on \((0, \infty)\) which lie in \(H \). \(M[\cdot] \) is said to be in the limit-S case at infinity if the differential system (1.3) has exactly \(S \) number of linearly independent solutions in \(H \). Given \(p, r, q_1, q_2, q_3 \) the number \(S \) is independent of \(\lambda \), as long as \(\text{im}\lambda \neq 0 \). The idea of this paper is to establish a general set of sufficient conditions on the coefficients \(p, r, q_1, q_2, q_3 \) so that \(M[\cdot] \) is in the limit-2 case at infinity. Several methods have been used for investigating the limit-2 case for the system (1.3) or for one similar to it. In 1954, Lidskii\(^5\) showed that the system

\[
- Y'' + Q Y = \lambda Y, \text{Im}\lambda \neq 0
\]

possesses \(k \) number of linearly independent square-integrable solutions on \((0, \infty)\) provided the square hermitian matrix \(Q(x) \) of order \(k \) satisfies

\[
(Q(x) \, h, h) \geq - N(x) \| h \|^2
\]

for any constant \(k \)-vector \(h \), where the positive continuous function \(N(x) \) satisfies

(i) \[\int_0^\infty \left[N(x) \right]^{-1/2} \, dx \text{ diverges} \]

and, either

(ii) \(N(x) \) is monotone

or,

(iii) \(N(x) \) is differentiable and \(\lim_{x \to \infty} \frac{N'(x)}{[N(x)]^{3/2}} < \infty \).
Seif's result\(^6\) can be derived from Lidskii's result by putting \(k=1\). Chakravarty\(^7\) (Th. III) proved in a different way that the system

\[
M_1[\psi] = \begin{pmatrix}
q_1 & -\frac{d^2}{dx^2} + q_2 \\
-\frac{d^2}{dx^2} + q_2 & q_3
\end{pmatrix}
\phi = \lambda \psi
\]

(1.6)

is in the limit-2 case at infinity if \(q_1, q_2, q_3\) are all \(O(x^2)\) as \(x \to \infty\). Anderson\(^8\) discussed the system

\[
\psi^{(2n+1)} + Q \psi = \lambda \psi
\]

(1.7)

where \(Q\) is a \(k \times k\) matrix of real measurable functions which are Lebesgue integrable on compact sub-intervals of \((0, \infty)\) and \(\Psi\) is a \(k\)-vector, and extended the results of Lidskii\(^5\) to the case when the system (1.7) possesses the minimum number \((viz. nk)\) of square-integrable solutions on \((0, \infty)\). The method applied by Anderson is similar to that applied by Hinton\(^9\) to the corresponding scalar equation. In particular, if \(n = 1, k = 2\) Anderson proved that [Th. 2.4], the system

\[
\psi'' + \begin{pmatrix}
q_1 & q_2 \\
q_2 & q_3
\end{pmatrix} \psi = t \psi
\]

is in the limit-2 case at infinity if \(q_1, q_3, |q_2| \leq N(x)\) for \(N(x)\) as in (1.5). Following Titchmarsh\(^10\) (Th. 2.20) Bhagat and Guma\(^11\) (§ 5) pointed out that the system (1.3) with \(p=r=1\) is in the limit-2 case at infinity, if \(q_2=0(1)\) and \(q_1, q_3 \geq -N(x)\) is a positive, continuous non-decreasing function of \(x\) satisfying condition (i) of (1.3). A complete analysis of the system (1.6) has been made by Eastham\(^12\) when \(q_j's, j=1,2,3\) are multiples of powers of \(x\), giving conditions under which \(S=2\) or \(S=3\) or 4. In this connection mention should also be made of the papers by Titchmarsh\(^13\), Shaw and Bhagat\(^14\), Sengupta\(^15,16\), Eastham\(^17\) and Everett\(^18,19\).

In this paper, we present a simpler method to establish that the system (1.3) is in the limit-2 case at infinity under suitable conditions imposed on the coefficients \(p, r, q_1, q_2, q_3\) which will include the cases mentioned earlier. The method employed is based on an extension of a technique given in Levinson\(^21\) or Coddington and Levinson\(^22\) (Th. 2.4 Ch. 9, Sec. 2). The result obtained is given in the following theorem:

Theorem: Let \(N(x)\) be a positive, absolutely continuous and non-decreasing function of \(x\) such that
(i) \[\int_0^\infty \left[PN \right]^{-1/2} \, dx \text{ diverges, } P = \max(p, r) \]
(ii) \[\lim \sup_{x \to \infty} N' \sqrt{|p| N^3} \text{ and } \lim \sup_{x \to \infty} N' \sqrt{(r/ N^3) } \text{ exist finitely} \]
and moreover,

(iii) \[q_1(x) \geq -k_1 \, N(x), \quad q_2(x) \geq -k_1 \, N(x) \text{ and } q_2(x) \leq k_2 \, N(x) \quad (1.10) \]

\(k_1, k_2, k_3 \) are all finite positive constants) hold for all sufficiently large values of \(x \).

Then \(M[\cdot] \) is in the limit-2 case at infinity.

The proof is given in the following section. In proving the theorem we extract a function

\[W(x) = \int_0^x \left[(\theta^T \, R \, \theta'/N) \right] \, dx \quad \left[R = \begin{pmatrix} p & 0 \\ 0 & r \end{pmatrix} \right], \]

from the equation

\[\int_0^x (\theta^T \, M[\theta]/N) \, dx = i \int_0^x (\theta''/N) \, dx, \]

converging to a finite limit as \(x \to \infty \), which later produces \((R \theta'/\sqrt{PN}) \in H \) for all \(\theta \in D \) [See section 2 for definition of \(D \)]. Finally the theorem follows on utilising the last result along with (1.8) and (2.1).

2. Proof of the theorem

We introduce a linear manifold \(D \) as follows:

A vector-valued function \(\Psi = \begin{pmatrix} f \\ g \end{pmatrix} \) is in \(D \) if and only if

(i) \(\Psi \in H \)
(ii) \(f', g' \) are absolutely continuous on \((0, \infty) \)
(iii) \(M[\Psi] \in H \)

For \(\Psi = \begin{pmatrix} f \\ g \end{pmatrix} \), \(\Phi = \begin{pmatrix} \psi' \\ \psi \end{pmatrix} \in D \), it is known from Green's formula that

\[\int_0^\infty \bar{\Phi}^T \, M[\Psi] \, dx - \int_0^\infty \bar{\Psi}^T \, M[\Phi] \, dx = \left\{ p \left(\tilde{f} \Psi' - f' \bar{\Psi} \right) + r \left(\tilde{g} \Psi' - g' \bar{\Psi} \right) \right\} \]

and the bilinear form

\[[\Psi \, \Phi] = p \left(\tilde{f} \Psi' - f' \bar{\Psi} \right) + r \left(\tilde{g} \Psi' - g' \bar{\Psi} \right) \text{ tends to a finite limit as } x \to \infty \quad (2.1) \]

and that

\[\lim_{\imath \to \infty} [\Psi \, \Phi] = 0 \quad (2.2) \]
for all $\Psi, \Phi \in D$ if and only if M is in the limit-2 case at infinity [See Sengupta2 Th. 6.2; Naimark1 § 18.3 lemma].

Since the number of L^2-solutions of the system (1.3) remains unchanged as long as $\text{im} \lambda \neq 0$, we start to prove the theorem by choosing $\lambda = i$ in it.

Let $\Psi = \begin{pmatrix} f \\ g \end{pmatrix} \in D$ be a solution of $M \Psi = i \Psi$ satisfying the initial conditions

$$
\begin{align*}
&f(0) = \alpha, g(0) = \beta \\
&p(a)f'(a) = \gamma, r(a)g'(a) = \delta
\end{align*}
$$

a, β, γ, δ are finite complex constants [For existence of the initial conditions, see Sengupta2 Th. 3.1].

Multiply both sides of $M \Psi = i \Psi$ by (Ψ^* / N), integrate between a and x, and then integrating the right-hand side by parts, we get

$$
- \int_a^x q \frac{f'}{N} + q_2 (f g + f^2) + p g^2 \, dx + \int_a^x \left| f \right|^2 + \left| g \right|^2 \, dx = - \int_a^x \frac{(pf')f + (rg')g}{N} \, dx
$$

Taking real parts from both the sides,

$$
- \int_a^x q \frac{|f|^2 + 2q_2 (f g + f^2) + q_3 |g|^2}{N} \, dx = - \frac{p \left(f_1 f_1' + f_2 f_2' + r (g_1 g_1' + g_2 g_2') \right)}{N} \left| \Psi \right|^2 + \\
+ \int_a^x \frac{|f'|^2 + r |g'|^2}{N} \, dx - \int_a^x \frac{p \left(f_1 f_1' + f_2 f_2' + r (g_1 g_1' + g_2 g_2') \right)}{N^2} \, dx
$$

then by condition (1.10) l.h.s. satisfies the inequality

$$
- \int_a^x q \frac{|f|^2 + 2q_2 (f g + f^2) + q_3 |g|^2}{N} \, dx \leq - \int_a^x \frac{q_1 |f|^2 + q_3 |g|^2}{N} \, dx + \\
+ \frac{2}{N} \int_a^x |g_2| \left(f_1 g_1 + f_2 g_2 \right) \, dx < k_1 \int_a^x |f|^2 \, dx + k_1 \int_a^x |g|^2 \, dx + 2k_2 \int_a^x \left| f_1 g_1 + f_2 g_2 \right| \, dx
$$

Hence there exists a constant K such that

$$
K > \frac{p \left(f_1 f_1' + f_2 f_2' + r (g_1 g_1' + g_2 g_2') \right)}{N} + \int_a^x \frac{|f'|^2 + r |g'|^2}{N} \, dx - \\
- \int_a^x \frac{p \left(f_1 f_1' + f_2 f_2' + r (g_1 g_1' + g_2 g_2') \right)}{N^2} \, dx (\Psi x)
$$

(2.3)
Now it is to be proved that if the solution $\Psi \in D$ then the integral

$$\int_{a}^{b} \frac{p|f'|^2 + r|g'|^2}{N} \, dx$$

converges. For, suppose conversely that this integral diverges, then the function

$$W(x) = \int_{a}^{x} \frac{p|f'|^2 + r|g'|^2}{N} \, dx$$

is positive, monotonically increasing and tends to $+\infty$ as $x \to \infty$. Using condition (1.9) and then the Cauchy-Schwartz inequality results in

$$\left| \int_{a}^{x} \frac{p(f_1 f_1' + f_2 f_2') + r(g_1 g_1' + g_2 g_2')}{N^2} \, dx \right| \leq K_1 \left(\int_{a}^{x} \frac{p(f_1^2 + f_2^2) + r(g_1^2 + g_2^2)}{N} \, dx \right)^{1/2} \left(\int_{a}^{x} \frac{p|f'|^2 + r|g'|^2}{N} \, dx \right)^{1/2}$$

Applying these results in (2.3), we find that

$$K > W(x) - \frac{p(f_1 f_1' + f_2 f_2') + r(g_1 g_1' + g_2 g_2')}{N} = K_2 \sqrt{W(x)}$$

Since $W(x) \to \infty$ as $x \to \infty$, the last inequality can hold only if

$$\frac{p(f_1 f_1' + f_2 f_2') + r(g_1 g_1' + g_2 g_2')}{N} > 1/2 \, W(x)$$

for all sufficiently large x. As p, r and N are positive it appears from the above inequality that at least one of the pairs $f_1, f_1'; f_2, f_2'; g_1, g_1'; g_2, g_2'$ is of the same sign for large x. In this situation at least one of the four integrals

$$\int_{a}^{x} \frac{p|f'|^2 + r|g'|^2}{N} \, dx$$

is positive, monotonically increasing and tends to $+\infty$ as $x \to \infty$. Using condition (1.9) and then the Cauchy-Schwartz inequality results in
THE LIMIT-2 CASE

\[\int f_1^2 \, d\mathbf{x}, \int f_2^2 \, d\mathbf{x}, \int g_1^2 \, d\mathbf{x}, \int g_2^2 \, d\mathbf{x} \]

fails to exist and this contradicts the fact that \(\Psi \in D \). Thus, \(W(x) \) remains finite for \(\Psi \in D \) and that

\[\int_{\mathbb{D}} \frac{p|f'|^2 + r|g'|^2}{N} \, d\mathbf{x} < \infty. \]

it then follows

\[\sqrt{p/N} |f'|, \sqrt{r/N} |g'| \in L^2(0, \infty) \]

and consequently

\[\frac{p|f'|}{\sqrt{pN}} \leq \frac{p|f'|}{\sqrt{pN}} = \sqrt{p/N} |f'| \in L^2(0, \infty), \quad (2.4a) \]

\([P = \max (p, r)] \) and likewise

\[\frac{r|g'|}{\sqrt{pN}} \in L^2(0, \infty) \quad (2.4b) \]

for all \(\Psi \in D \).

Utilizing the results obtained we now show that \(\lim_{\text{lim}} \Psi \Phi = 0 \) for any solution \(\Psi, \Phi \in D \).

From (2.1) we find

\[\int_{\mathbb{D}} \frac{|\Psi \Phi|}{\sqrt{PN}} \, d\mathbf{x} = \int_{\mathbb{D}} \frac{|p\mathbf{u}' - pf' \mathbf{u} + r\mathbf{v}' - rg' \mathbf{v}|}{\sqrt{PN}} \, d\mathbf{x} \]

\[\leq \int_{\mathbb{D}} \frac{p|f||\mathbf{u}'| + p|f'||\mathbf{u}' + r|g||\mathbf{v}'| + r|g'||\mathbf{v}|}{\sqrt{PN}} \, d\mathbf{x} \]

The integral on the right side converges as \(x \) tending to infinity following the result (2.4) for \(\Psi, \Phi \in D \) and consequently

\[\int_{\mathbb{D}} \frac{|\Psi \Phi|}{\sqrt{PN}} \, d\mathbf{x} \]
converges. Now, if \(\lim_{t \to \infty} [\Psi \Phi] = k \), a finite limit (\(\neq 0 \)), we can find an \(X_k \in (0, \infty) \), depending on \(k \) such that

\[
1/2 |k| < |[\Psi \Phi]| < 3/2 |k|
\]

hold for all \(x > X_k \). Then

\[
\int_a^b \frac{|[\Psi \Phi]|}{\sqrt{PN}} \, dx = (\int_a^b + \int_b^c) \frac{|[\Psi \Phi]|}{\sqrt{PN}} \, dx \geq I_1 + 1/2 |k| \int_a^b \sqrt{PN} \to -\infty,
\]

as \(X \to \infty \) contradictory to (2.5) and the desired result \(\lim_{t \to \infty} [\Psi \Phi] = 0 \) is achieved, which ensures the system \(M[\cdot] \) to be in the limit-2 case at infinity.

Remark 1. Some discrepancy is found in between the papers of Gadamsi-Maho 23 and Eastham-Gould 24. In Theorem 3 24 the authors tried to apply the techniques of Titchmarsh 11 and Everitt 20 in proving the system (1.3) to be in the limit-2 case at infinity; the conditions taken there were

(i) \(0 < p, r \leq k x^q \)
(ii) \(q_1, q_1 \geq -k_1 x^a, q_2 \geq -k_2 x^r \)

with \(\alpha + \beta \leq 2, \alpha \geq 0, \beta - \alpha \leq 2 \gamma \leq \alpha \) and \(k, k_1, k_2 \) all positive finite constants; whereas in Theorem 1 (ii), 324 it was proved that the system (1.3), (with \(p = r = 1 \)) is in the limit-3 case at infinity provided

\[
q_1 = a \leq q_2, q_2 = b \geq q_3, a \geq 0, b \geq 0, ab < 1
\]

where \(q_2 \) be no where zero in some interval \([X, \infty), X \geq 0 \) and \(q_2^{-1/4}(q_2^{-1/4})^\gamma \in L^2(X, \infty) \).

As for an example, if we take \(p = r = 1 \) and \(q_1 = q_3 = 1/2 \, x^3, q_2 = x^3, x \in (0, \infty) \), then following Eastham-Gould 24 the system (1.3) turns out to be in the limit-3 case at infinity though the coefficients \(p, r, q_1, q_2, q_3 \) satisfy the conditions of Gadamsi-Maho 23.

Remark 2. It appears from the previous results (except Gadamsi-Maho 23) especially Anderson 8, Th.2.4 and the theorem of the present paper that for a system of the type (1.3), belonging to the limit-2 case at infinity, \(q_2 \) should satisfy

\[
|q_2(x)| \leq KN(x)
\]

along with other restrictions on \(q_1 \) and \(q_3 \).

Acknowledgements

The present result is a part of the work connected with a minor research project [Code No. 13337] supported by the University Grants Commission, New Delhi. The author is indebted to Dr. (Mrs.) Jyoti Das, Sir Asutosh Birth Centenary Professor for Higher Mathematics, Department of Pure Mathematics, Calcutta University for many helpful discussions. He also thanks the referee for extremely valuable suggestions.
THE LIMIT-2 CASE

References

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>Gadamsi, A.M and Marto, K.R.</td>
</tr>
<tr>
<td>24.</td>
<td>Eastham, M.S.P. and Gould, K.J.</td>
</tr>
</tbody>
</table>