Nanomaterial based Magnetic Resonance Imaging of Cancer

Asampille Gitanjali, Varsha P Brahmkhatri, Hanudatta S Atreya


Magnetic Resonance Imaging (MRI) is a widely used noninvasivemedical tool for detection and diagnosis of cancer. In recentyears, MRI has witnessed significant contributions from nanotechnologyto incorporate advanced features such as multimodality of nanoparticles,therapeutic delivery, specific targeting and the optical detectability formolecular imaging. Accurate composition, right scheme of surfacechemistry and properly designed structure is essential for achievingdesired properties of nanomaterials such as non-fouling surface, highimaging contrast, chemical stability, target specificity and/or multimodality.This review provides an overview of the recent progress in theranosticnanomaterials in imaging and the development of nanomaterial basedmagnetic resonance imaging of cancer. In particular, targeted theranosticsis a promising approach along with its targeting strategy in cancer treatmentusing MRI and multimodal imaging. We also discuss recent advancesin integrin mediated targeted MRI of cancer.

Full Text:



Cancer statistics: Data comparing more and less developed countries [


Bardhan R, Lal S, Joshi A, Halas NJ: Theranostic

nanoshells: From probe design to imaging and treatment

of cancer. Accounts of Chemical Research 2011,


Mukherjee A, Prasad TK, Rao NM, Banerjee R: Haloperidolassociated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. The Journal of Biological Chemistry 2005, 280(16):15619–15627.

Taverna G, Grizzi F, Colombo P, Graziotti P: Is Angiogenesis A Hallmark Of Prostate Cancer? Frontiers in

Oncology 2013, 3.

Friedl P, Alexander S: Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell 2011,


Hanahan D, Weinberg RA: Hallmarks of cancer: The next generation. Cell 2011, 144(5):646–674.

Benaron DA: The future of cancer imaging. Cancer

metastasis reviews 2002, 21(1):45–78.

Hood JD, Cheresh DA: Role of integrins in cell invasion

and migration. Nature Reviews Cancer 2002, 2(2):91–100.

Cai W, Chen X: Multimodality molecular imaging of

tumor angiogenesis. Journal of nuclear medicine: Official

publication, Society of Nuclear Medicine 2008, 49 Suppl


Cai W, Niu G, Chen X: Imaging of integrins as biomarkers for tumor angiogenesis. Current Pharmaceutical Design 2008, 14(28):2943–2973.

Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH,

Lim SM, Park S, Song R: RGD peptide-conjugated

multimodal NaGdF4:Yb3+/Er3+ nanophosphors for

upconversion luminescence, MR, and PET imaging

of tumor angiogenesis. Journal of nuclear medicine:

Official publication, Society of Nuclear Medicine 2013,


Prager GW, Poettler M: Angiogenesis in cancer: Basic

mechanisms and therapeutic advances. Hamostaseologie 2012, 32(2):105–114.

Choi KY, Liu G, Lee S, Chen X: Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale 2012, 4(2):330–342.

Alivisatos P: The use of nanocrystals in biological detection. Nature biotechnology 2004, 22(1):47–52.

Bae KH, Chung HJ, Park TG: Nanomaterials for

cancer therapy and imaging. Molecules and Cells 2011,


Contag CH: In vivo pathology: seeing with molecular

specificity and cellular resolution in the living body.

Annual Review of Pathology 2007, 2:277–305.

Kim HL: Optical imaging in oncology. Urologic Oncology 2009, 27(3):298–300.

Deshpande N, Pysz MA, Willmann JK: Molecular ultrasound assessment of tumor angiogenesis. Angiogenesis 2010, 13(2):175–188.

Mathews JD, Forsythe AV, Brady Z, Butler MW,

Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson

PR, Guiver TA et al: Cancer risk in 680,000 people

exposed to computed tomography scans in childhood

or adolescence: Data linkage study of 11 million Australians. BMJ (Clinical research ed.) 2013, 346:f2360.

Leung D, Krishnamoorthy S, Schwartz L, Divgi C: Imaging approaches with advanced prostate cancer: Techniques and timing. The Canadian Journal of Urology 2014, 21(2 Supp 1):42–47.

Townsend DW, Beyer T, Blodgett TM: PET/CT scanners: A hardware approach to image fusion. Seminars in Nuclear Medicine 2003, 33(3):193–204.

Massoud TF, Gambhir SS: Molecular imaging in living

subjects: seeing fundamental biological processes in a

new light. Genes & development 2003, 17(5):545–580.

Brenner DJ, Hall EJ: Computed tomography—An

increasing source of radiation exposure. The New

England Journal of Medicine 2007, 357(22):2277–2284.

Logothetis NK: What we can do and what we cannot do with fMRI. Nature 2008, 453(7197):869–878.

Artemov D, Bhujwalla ZM, Bulte JW: Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Current Pharmaceutical Biotechnology 2004, 5(6):485–494.

Blamire AM: The technology of MRI—The next 10 years? The British Journal of Radiology 2008, 81(968):601–617.

Delikatny EJ, Poptani H: MR techniques for in vivo

molecular and cellular imaging. Radiologic Clinics of

North America 2005, 43(1):205–220.

Xu W, Kattel K, Park JY, Chang Y, Kim TJ, Lee GH:

Paramagnetic nanoparticle T1 and T2 MRI contrast

agents. Physical Chemistry Chemical Physics: PCCP 2012, 14(37):12687–12700.

Kobayashi H, Longmire MR, Ogawa M, Choyke PL:

Rational chemical design of the next generation of

molecular imaging probes based on physics and biology:

mixing modalities, colors and signals. Chemical

Society Reviews 2011, 40(9):4626–4648.

Berry E, Bulpitt, AJ., Berry, E1., and Berry, L.: Fundamentals of MRI: An interactive learning approach. FL, USA: CRC Press; 2009.

Edelman RR HJ, Zlatkin, M, eds.: Clinical Magnetic Resonance Imaging, 2nd edn. Philadelphia: Saunders Publishing Co; 1996.

Bae KH, Kim YB, Lee Y, Hwang J, Park H, Park TG:

Bioinspired Synthesis and Characterization of Gadolinium- Labeled Magnetite Nanoparticles for Dual Contrast T1- and T2-Weighted Magnetic Resonance Imaging. Bioconjugate Chemistry 2010, 21(3):505–512.

Kwee TC, Takahara T, Ochiai R, Katahira K, Van Cauteren M, Imai Y, Nievelstein RA, Luijten PR: Whole-body diffusion-weighted magnetic resonance imaging. European journal of radiology 2009, 70(3):409–417.

Xing Y, Zhao J, Conti PS, Chen K: Radiolabeled

nanoparticles for multimodality tumor imaging.

Theranostics 2014, 4(3):290–306.

Louie A: Multimodality Imaging Probes: Design and

Challenges. Chemical Reviews 2010, 110(5):3146–3195.

Terreno E, Castelli DD, Viale A, Aime S: Challenges for molecular magnetic resonance imaging. Chem Rev 2010, 110(5):3019–3042.

Weissleder R: Molecular imaging in cancer. Science

(New York, NY) 2006, 312(5777):1168–1171.

De M, Chou SS, Joshi HM, Dravid VP: Hybrid magnetic

nanostructures (MNS) for magnetic resonance imaging

applications. Advanced Drug Delivery Reviews 2011,


Callan DE, Jones JA, Callan A: Multisensory and

modality specific processing of visual speech in different

regions of the premotor cortex. Frontiers in psychology

, 5:389.

Lee G, I H, Kim SJ, Jeong YJ, Kim IJ, Pak K, Park DY, Kim GH: Clinical Implication of PET/MR Imaging in Preoperative Esophageal Cancer Staging: Comparison with PET/CT, Endoscopic Ultrasonography, and CT. Journal of nuclear medicine: Official Publication, Society of Nuclear Medicine 2014.

Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X: PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31(11):3016–3022.

Mozafari MR: Nanomaterials and Nanosystems for Biomedical Applications: Springer Netherlands; 2007.

Mo A, Liao J, Xu W, Xian S, Li Y, Bai S: Preparation and antibacterial effect of silver–hydroxyapatite/titania

nanocomposite thin film on titanium. Applied Surface

Science 2008, 255(2):435–438.

Yang F-C, Wu K-H, Liu M-J, Lin W-P, Hu M-K: Evaluation of the antibacterial efficacy of bamboo charcoal/ silver biological protective material. Materials Chemistry and Physics 2009, 113(1):474–479.

Kim M, Byun JW, Shin DS, Lee YS: Spontaneous

formation of silver nanoparticles on polymeric supports.

Mater Res Bull 2009, 44(2):334–338.

Petros RA, DeSimone JM: Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug

Discov 2010, 9(8):615–627.

Ferrari M: Nanovector therapeutics. Current Opinion in Chemical Biology 2005, 9(4):343–346.

Wong SY, Han L, Timachova K, Veselinovic J, Hyder

MN, Ortiz C, Klibanov AM, Hammond PT: Drastically

lowered protein adsorption on microbicidal hydrophobic/

hydrophilic polyelectrolyte multilayers. Biomacromolecules 2012, 13(3):719–726.

Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L: Nanomaterials: applications in cancer imaging and therapy. Advanced Materials (Deerfield Beach, Fla) 2011, 23(12):H18–40.

Rozhkova EA: Nanoscale materials for tackling brain

cancer: Recent progress and outlook. Advanced materials (Deerfield Beach, Fla) 2011, 23(24):H136–150.

Minelli C, Lowe SB, Stevens MM: Engineering nanocomposite materials for cancer therapy. Small (Weinheim an der Bergstrasse, Germany) 2010, 6(21):2336–2357.

Weissleder R, Pittet MJ: Imaging in the era of molecular oncology. Nature 2008, 452(7187):580–589.

Brindle K: New approaches for imaging tumour

responses to treatment. Nature reviews Cancer 2008,


Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7(9):771–782.

Cho K, Wang X, Nie S, Chen ZG, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research: An Official Journal of the American Association for Cancer Research 2008, 14(5):1310–1316.

Kim KY: Nanotechnology platforms and physiological

challenges for cancer therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3(2):103–110.

Sahoo SK, Labhasetwar V: Nanotech approaches to

drug delivery and imaging. Drug discovery today 2003,


Faraji AH, Wipf P: Nanoparticles in cellular drug

delivery. Bioorganic & Medicinal Chemistry 2009,


Haley B, Frenkel E: Nanoparticles for drug delivery in

cancer treatment. Urologic Oncology 2008, 26(1):57–64.

Rosenholm JM, Sahlgren C, Linden M: Towards multifunctional, targeted drug delivery systems using

mesoporous silica nanoparticles—Opportunities &

Challenges. Nanoscale 2010, 2(10):1870–1883.

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS,

Farokhzad OC: Nanoparticles in medicine: Therapeutic

Applications and Developments. Clinical Pharmacology

and Therapeutics 2008, 83(5):761–769.

Josephson L, Groman EV, Menz E, Lewis JM, Bengele H: A functionalized superparamagnetic iron oxide colloid

as a receptor directed MR contrast agent. Magnetic Resonance Imaging 1990, 8(5):637–646.

Barenholz Y: Doxil(R)—The first FDA-approved nanodrug: Lessons learned. Journal of Controlled Release: Official Journal of the Controlled Release Society 2012, 160(2):117–134.

O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E,

Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP

et al: Reduced cardiotoxicity and comparable efficacy in

a phase III trial of pegylated liposomal doxorubicin HCl

(CAELYX/Doxil) versus conventional doxorubicin for

first-line treatment of metastatic breast cancer. Annals

of oncology: Official Journal of the European Society for

Medical Oncology / ESMO 2004, 15(3):440–449.

Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PC,

Wong NS, Chowbay B: Phase I pharmacokinetic study of

a weekly liposomal paclitaxel formulation (Genexol-PM)

in patients with solid tumors. Annals of Oncology: Official

Journal of the European Society for Medical Oncology/

ESMO 2010, 21(2):382–388.

Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW,

Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD,

Lanza GM et al: Molecular imaging of angiogenesis in

early-stage atherosclerosis with alpha(v)beta3-integrintargeted nanoparticles. Circulation 2003, 108(18): 2270–2274.

Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A: Evidence of RNAi in

humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464(7291):1067–1070.

J.F: Reinventing pharma: The theranostic revolution.

Current Drug Discovery 2002, 2:17–19.

Gao X, Cui Y, Levenson RM, Chung LW, Nie S: In vivo

cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 2004, 22(8):969–976.

Banerjee SS, Chen DH: Multifunctional pH-sensitive

magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 2008, 19(50):505104.

Agasti SS, Chompoosor A, You C-C, Ghosh P, Kim CK,

Rotello VM: Photoregulated Release of Caged Anticancer

Drugs from Gold Nanoparticles. Journal of the American

Chemical Society 2009, 131(16):5728–5729.

Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y,

Qu H, Wang Z, Li Y et al: Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for

pH-responsive MRI, ultrasonography and circumvention

of MDR in cancer cells. Biomaterials 2012, 33(29):7126–7137.

Gomes RS, das Neves RP, Cochlin L, Lima A, Carvalho R, Korpisalo P, Dragneva G, Turunen M, Liimatainen T,

Clarke K et al: Efficient pro-survival/angiogenic miRNA

delivery by an MRI-detectable nanomaterial. ACS nano

, 7(4):3362–3372.

Tian G, Yin W, Jin J, Zhang X, Xing G, Li S, Gu Z, Zhao

Y: Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/

magnetic resonance/X-ray computed tomography

imaging and targeted delivery of combined anticancer

drugs. Journal of Materials Chemistry B 2014, 2(10):1379.

Dobrovolskaia MA, McNeil SE: Immunological properties of engineered nanomaterials. Nat Nano 2007,


Rivera Gil P, Huhn D, del Mercato LL, Sasse D, Parak WJ: Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacological research: The Official Journal of the Italian Pharmacological Society 2010, 62(2):115–125.

Wang YX, Hussain SM, Krestin GP: Superparamagnetic iron oxide contrast agents: physicochemical characteristics

and applications in MR imaging. European radiology

, 11(11):2319–2331.

Etheridge ML, Campbell SA, Erdman AG, Haynes CL,

Wolf SM, McCullough J: The big picture on nanomedicine:

the state of investigational and approved nanomedicine

products. Nanomedicine: Nanotechnology, Biology,

and Medicine 2013, 9(1):1–14.

Ma X, Zhao Y, Liang XJ: Theranostic nanoparticles

engineered for clinic and pharmaceutics. Accounts of

Chemical Research 2011, 44(10):1114–1122.

Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA:

Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology, and Medicine 2008, 4(4):273–282.

Sinha R, Kim GJ, Nie S, Shin DM: Nanotechnology

in cancer therapeutics: Bioconjugated nanoparticles

for drug delivery. Molecular Cancer Therapeutics 2006,


Zamboni WC: Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clinical cancer research: An Official Journal of the American Association for Cancer Research 2005, 11(23):8230–8234.

Zamboni WC: Concept and clinical evaluation of

carrier-mediated anticancer agents. The oncologist 2008,


Slingerland M, Guchelaar HJ, Gelderblom H: Liposomal drug formulations in cancer therapy: 15 years along the road. Drug discovery today 2012, 17(3–4):160–166.

Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, Naito H, Kitagawa H, Ishiyama K, Ohgi T et al: Antitumor activity of small interfering RNA/

cationic liposome complex in mouse models of cancer.

Clinical cancer research: An Official Journal of the American Association for Cancer Research 2004, 10(22):7721–7726.

Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, Dewhirst MW: In vivo monitoring

of tissue pharmacokinetics of liposome/drug using

MRI: illustration of targeted delivery. Magnetic resonance

in medicine: official journal of the Society of Magnetic

Resonance in Medicine/Society of Magnetic Resonance in

Medicine 2004, 51(6):1153–1162.

Kumari A, Yadav SK, Yadav SC: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B, Biointerfaces 2010, 75(1):1–18.

Wang X, Wang Y, Chen ZG, Shin DM: Advances of cancer therapy by nanotechnology. Cancer research and treatment: Official Journal of Korean Cancer Association 2009, 41(1):1–11.

Cegnar M, Kristl J, Kos J: Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opinion on Biological Therapy 2005, 5(12):1557–1569.

Li X, Zhao Q, Qiu L: Smart ligand: Aptamer-mediated

targeted delivery of chemotherapeutic drugs and siRNA

for cancer therapy. Journal of Controlled Release 2013,


Guthi JS, Yang SG, Huang G, Li S, Khemtong C,

Kessinger CW, Peyton M, Minna JD, Brown KC, Gao J:

MRI-visible micellar nanomedicine for targeted drug

delivery to lung cancer cells. Molecular Pharmaceutics

, 7(1):32–40.

Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J: Multifunctional polymeric micelles as cancer-targeted, MRIultrasensitive drug delivery systems. Nano letters 2006, 6(11):2427–2430.

Lee CM, Jeong HJ, Cheong SJ, Kim EM, Kim DW,

Lim ST, Sohn MH: Prostate cancer-targeted imaging

using magnetofluorescent polymeric nanoparticles

functionalized with bombesin. Pharmaceutical research

, 27(4):712–721.

Rowe MD, Thamm DH, Kraft SL, Boyes SG: Polymermodified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 2009, 10(4):983–993.

Rowe MD, Chang CC, Thamm DH, Kraft SL,

Harmon JF, Jr., Vogt AP, Sumerlin BS, Boyes SG: Tuning

the magnetic resonance imaging properties of positive

contrast agent nanoparticles by surface modification

with RAFT polymers. Langmuir: The ACS Journal of

Surfaces and Colloids 2009, 25(16):9487–9499.

Liu Y, Feng L, Liu T, Zhang L, Yao Y, Yu D, Wang L,

Zhang N: Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 2014, 6(6):3231–3242.

G.R. Newkome, C. N. Moorefield, F. Vögtle. In: Dendrimers and Dendrons: Concepts, Syntheses, Applications. edn.: Wiley-VCH Verlag GmbH & Co. KGaA; 2004.

Hourani R, Kakkar A: Advances in the elegance of

chemistry in designing dendrimers. Macromolecular

Rapid Communications 2010, 31(11):947–974.

Ballauff M, Likos CN: Dendrimers in solution: insight

from theory and simulation. Angewandte Chemie

(International ed in English) 2004, 43(23):2998–3020.

Percec V, Wilson DA, Leowanawat P, Wilson CJ,

Hughes AD, Kaucher MS, Hammer DA, Levine DH,

Kim AJ, Bates FS et al: Self-assembly of Janus dendrimers into uniform dendrimersomes and other

complex architectures. Science (New York, NY) 2010,


Stiriba SE, Frey H, Haag R: Dendritic polymers in

biomedical applications: from potential to clinical

use in diagnostics and therapy. Angewandte Chemie

(International ed in English) 2002, 41(8):1329–1334.

Boas U, Heegaard PM: Dendrimers in drug research.

Chemical Society reviews 2004, 33(1):43–63.

Medina SH, El-Sayed ME: Dendrimers as carriers for

delivery of chemotherapeutic agents. Chem Rev 2009,


Astruc D, Boisselier E, Ornelas C: Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 2010, 110(4):1857–1959.

Menjoge AR, Kannan RM, Tomalia DA: Dendrimerbased drug and imaging conjugates: design considerations for nanomedical applications. Drug discovery today 2010, 15(5–6):171–185.

Lim J, Turkbey B, Bernardo M, Bryant LH, Garzoni M,

Pavan GM, Nakajima T, Choyke PL, Simanek EE, Kobayashi H: Gadolinium MRI Contrast Agents Based on Triazine Dendrimers: Relaxivity and In Vivo Pharmacokinetics. Bioconjugate Chemistry 2012, 23(11):2291–2299.

Kobayashi H, Brechbiel MW: Dendrimer-based macromolecular MRI contrast agents: Characteristics and

Application. Molecular Imaging 2003, 2(1):1–10.

Barth RF, Wu G, Yang W, Binns PJ, Riley KJ, Patel H, Coderre JA, Tjarks W, Bandyopadhyaya AK, Thirumamagal BT et al: Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMCC225) as a delivery agent. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine 2004, 61(5):899–903.

Nwe K, Milenic DE, Ray GL, Kim Y-S, Brechbiel MW:

Preparation of Cystamine Core Dendrimer and

Antibody–Dendrimer Conjugates for MRI Angio-graphy.

Molecular Pharmaceutics 2011, 9(3):374–381.

Walther C, Meyer K, Rennert R, Neundorf I: Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 2008,


Sharma P, Brown S, Walter G, Santra S, Moudgil B:

Nanoparticles for bioimaging. Advances in Colloid and

Interface Science 2006, 123–126:471–485.

Walling MA, Novak JA, Shepard JR: Quantum dots for live cell and in vivo imaging. International Journal of

Molecular Sciences 2009, 10(2):441–491.

Hild WA, Breunig M, Goepferich A: Quantum dots-nanosized probes for the exploration of cellular and intracellular targeting. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 2008, 68(2):153–168.

True LD, Gao X: Quantum dots for molecular pathology: their time has arrived. The Journal of Molecular Diagnostics: JMD 2007, 9(1):7–11.

Azzazy HM, Mansour MM, Kazmierczak SC: From

diagnostics to therapy: prospects of quantum dots.

Clinical biochemistry 2007, 40(13–14):917–927.

Mulder WJ, Castermans K, van Beijnum JR, Oude

Egbrink MG, Chin PT, Fayad ZA, Lowik CW, Kaijzel

EL, Que I, Storm G et al: Molecular imaging of

tumor angiogenesis using alphavbeta3-integrin targeted

multimodal quantum dots. Angiogenesis 2009,


Wang S, Jarrett BR, Kauzlarich SM, Louie AY: Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. Journal of the American Chemical Society 2007, 129(13):3848–3856.

Cai W, Chen K, Li ZB, Gambhir SS, Chen X: Dualfunction probe for PET and near-infrared fluorescence imaging of tumor vasculature. Journal of nuclear medicine: Official Publication, Society of Nuclear Medicine 2007, 48(11):1862–1870.

Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G,

Rao J, Chen X, Wu AM, Weiss S, Gambhir SS: microPETbased biodistribution of quantum dots in living mice. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 2007, 48(9):1511–1518.

Yong KT: Mn-doped near-infrared quantum dots as

multimodal targeted probes for pancreatic cancer

imaging. Nanotechnology 2009, 20(1):015102.

Kennel SJ, Woodward JD, Rondinone AJ, Wall J, Huang Y, Mirzadeh S: The fate of MAb-targeted Cd(125 m)Te/ZnS nanoparticles in vivo. Nuclear Medicine and Biology 2008, 35(4):501–514.

Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Peng X,

Chen X: Ultrasmall near-infrared non-cadmium quantum

dots for in vivo tumor imaging. Small (Weinheim an

der Bergstrasse, Germany) 2010, 6(2):256–261.

Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY: Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. Journal of the American Chemical Society 2010, 132(6):2016–2023.

Pisanic TR, 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S: Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007, 28(16): 2572–2581.

Shubayev VI, Pisanic TR, 2nd, Jin S: Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews 2009, 61(6):467–477.

Jarrett BR, Gustafsson B, Kukis DL, Louie AY: Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 2008, 19(7):1496–1504.

Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC, Hsiao JK: Iridium-complex functionalized Fe3O4/SiO2 core/shell nanoparticles:

A facile three-in-one system in magnetic resonance

imaging, luminescence imaging, and photodynamic

therapy. Small (Weinheim an der Bergstrasse, Germany)

, 4(2):218–224.

Harisinghani MG, Weissleder R: Sensitive, noninvasive detection of lymph node metastases. PLoS medicine 2004, 1(3):e66.

Harisinghani MG, Barentsz J, Hahn PF, Deserno WM,

Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine 2003, 348(25):2491–2499.

Chen J, Guo Z, Wang HB, Gong M, Kong XK, Xia P,

Chen QW: Multifunctional Fe3O4@C@Ag hybrid

nanoparticles as dual modal imaging probes and nearinfrared light-responsive drug delivery platform.

Biomaterials 2013, 34(2):571–581.

Jain KK: The role of nanobiotechnology in drug

discovery. Advances in Experimental Medicine and Biology 2009, 655:37–43.

Delong RK, Reynolds CM, Malcolm Y, Schaeffer A,

Severs T, Wanekaya A: Functionalized gold nanoparticles

for the binding, stabilization, and delivery of therapeutic

DNA, RNA, and other biological macromolecules.

Nanotechnology, Science and Applications 2010, 3:53–63.

Kim CK, Ghosh P, Rotello VM: Multimodal drug

delivery using gold nanoparticles. Nanoscale 2009,


Cobley CM, Chen J, Cho EC, Wang LV, Xia Y: Gold nanostructures: A class of multifunctional materials for

biomedical applications. Chemical Society Reviews 2011,


Zrazhevskiy P, Gao X: Multifunctional Quantum Dots for Personalized Medicine. Nano today 2009, 4(5):414–428.

Biju V, Itoh T, Anas A, Sujith A, Ishikawa M: Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry 2008, 391(7): 2469–2495.

Partha R, Conyers JL: Biomedical applications of

functionalized fullerene-based nanomaterials. International Journal of Nanomedicine 2009, 4:261–275.

Sun C, Lee JS, Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery

Reviews 2008, 60(11):1252–1265.

Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M: In vivo MRI detection of gliomas by chlorotoxin-conjugated super paramagnetic nanoprobes. Small (Weinheim an der Bergstrasse, Germany) 2008, 4(3):372–379.

Sadowski EA, Bennett LK, Chan MR, Wentland AL,

Garrett AL, Garrett RW, Djamali A: Nephrogenic systemic

fibrosis: Risk factors and incidence estimation. Radiology

, 243(1):148–157.

Jaganathan H, Hugar DL, Ivanisevic A: Examining MRI contrast in three-dimensional cell culture phantoms

with DNA-templated nanoparticle chains. ACS Applied

Materials & Interfaces 2011, 3(4):1282–1288.

Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S:

Antiangiogenic properties of gold nanoparticles. Clinical

cancer research: An official Journal of the American

Association for Cancer Research 2005, 11(9):3530–3534.

Bhattacharya R, Mukherjee P: Biological properties of ‘naked’ metal nanoparticles. Advanced Drug Delivery

Reviews 2008, 60(11):1289–1306.

Topete A, Alatorre-Meda M, Villar-Alvarez EM, Carregal- Romero S, Barbosa S, Parak WJ, Taboada P, Mosquera V: Polymeric-Gold Nanohybrids for Combined Imaging and Cancer Therapy. Advanced Healthcare Materials 2014.

Auzel F: Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 2004, 104(1):139–173.

Shen J, Sun LD, Yan CH: Luminescent rare earth nanomaterials for bioprobe applications. Dalton transactions (Cambridge, England: 2003) 2008(42):5687–5697.

Frangioni JV: In vivo near-infrared fluorescence

imaging. Curr Opin Chem Biol 2003, 7(5):626–634.

Palmer RJ, Butenhoff JL, Stevens JB: Cytotoxicity of the rare earth metals cerium, lanthanum, and neodymium in vitro: comparisons with cadmium in a pulmonary macrophage primary culture system. Environmental Research 1987, 43(1):142–156.

Zako T, Nagata H, Terada N, Utsumi A, Sakono M,

Yohda M, Ueda H, Soga K, Maeda M: Cyclic RGD

peptide-labeled upconversion nanophosphors for

tumor cell-targeted imaging. Biochemical and Biophysical

Research Communications 2009, 381(1):54–58.

Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q,

Zhou L, Peng W, Hua Y et al: Multifunctional nanoprobes

for upconversion fluorescence, MR and CT trimodal

imaging. Biomaterials 2012, 33(4):1079–1089.

Lacerda L, Bianco A, Prato M, Kostarelos K: Carbon

nanotubes as nanomedicines: From toxicology to

pharmacology. Advanced Drug Delivery Reviews 2006,


Kostarelos K, Bianco A, Prato M: Promises, facts and

challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotechnology 2009, 4(10):627–633.

Prato M, Kostarelos K, Bianco A: Functionalized carbon nanotubes in drug design and discovery. Accounts of Chemical Research 2008, 41(1):60–68.

Tasis D, Tagmatarchis N, Bianco A, Prato M: Chemistry of carbon nanotubes. Chem Rev 2006, 106(3):1105–1136.

Krishna V, Singh A, Sharma P, Iwakuma N, Wang Q,

Zhang Q, Knapik J, Jiang H, Grobmyer SR, Koopman B

et al: Polyhydroxy fullerenes for non-invasive cancer

imaging and therapy. Small (Weinheim an der Bergstrasse, Germany) 2010, 6(20):2236–2241.

Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J

et al: Long-term survival following a single treatment

of kidney tumors with multiwalled carbon nanotubes

and near-infrared radiation. Proceedings of the National

Academy of Sciences of the United States of America 2009, 106(31):12897–12902.

Boczkowski J, Lanone S: Potential uses of carbon

nanotubes in the medical field: How worried should

patients be? Nanomedicine (London, England) 2007,


Kaiser JP, Roesslein M, Buerki-Thurnherr T, Wick P:

Carbon nanotubes—Curse or blessing. Current Medicinal

Chemistry 2011, 18(14):2115–2128.

Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA: Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine (London, England) 2011, 6(1):143–156.

Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S: Solvothermal synthesis of cobalt ferrite

nanoparticles loaded on multiwalled carbon nanotubes

for magnetic resonance imaging and drug delivery. Acta

Biomaterialia 2011, 7(9):3496–3504.

Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R,

Liu R, Zhang Z: PEGylated fullerene/iron oxide

nanocomposites for photodynamic therapy, targeted

drug delivery and MR imaging. Biomaterials 2013,


Meek ST, Greathouse JA, Allendorf MD: Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Advanced Materials (Deerfield Beach, Fla) 2011, 23(2):249–267.

Taylor KM, Rieter WJ, Lin W: Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society 2008, 130(44):14358–14359.

Taylor KM, Jin A, Lin W: Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angewandte Chemie (International ed in English) 2008, 47(40):7722–7725.

Hatakeyama W, Sanchez TJ, Rowe MD, Serkova NJ,

Liberatore MW, Boyes SG: Synthesis of gadolinium

nanoscale metal-organic framework with hydrotropes:

Manipulation of particle size and magnetic resonance

imaging capability. ACS Applied Materials & Interfaces

, 3(5):1502–1510.

Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C,

Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C et al:

Porous metal-organic-framework nanoscale carriers

as a potential platform for drug delivery and imaging.

Nature Materials 2010, 9(2):172–178.

Mueller U, Schubert M, Teich F, Puetter H, Schierle-

Arndt K, Pastre J: Metal-organic frameworks-prospective

industrial applications. Journal of Materials Chemistry

, 16(7):626–636.

Peters JA, Djanashvili K: Lanthanide Loaded Zeolites, Clays, and Mesoporous Silica Materials as MRI Probes. European Journal of Inorganic Chemistry 2012, 2012(12): 1961–1974.

Tsotsalas MM, Kopka K, Luppi G, Wagner S, Law MP,

Schafers M, De Cola L: Encapsulating (111)In in nanocontainers for scintigraphic imaging: Synthesis, characterization, and in vivo biodistribution. ACS nano 2010, 4(1):342–348.

Strassert CA, Otter M, Albuquerque RQ, Hone A, Vida Y, Maier B, De Cola L: Photoactive hybrid nanomaterial for targeting, labeling, and killing antibiotic-resistant bacteria. Angewandte Chemie (International ed in English) 2009, 48(42):7928–7931.

Lee CH, Cheng SH, Huang IP, Souris JS, Yang CS, Mou CY, Lo LW: Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angewandte Chemie (International ed in English) 2010, 49(44):8214–8219

Csajbok E, Banyai I, Vander Elst L, Muller RN, Zhou W, Peters JA: Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: Relationship between structure and relaxivity. Chemistry

, 11(16):4799–4807.

Warner JH, Hoshino A, Yamamoto K, Tilley RD: Watersoluble photoluminescent silicon quantum dots.

Angewandte Chemie (International ed in English) 2005,


Rosso-Vasic M, Spruijt E, van Lagen B, De Cola L,

Zuilhof H: Alkyl-functionalized oxide-free silicon

nanoparticles: Synthesis and optical properties.

Small (Weinheim an der Bergstrasse, Germany) 2008,


Wu X, Wu M, Zhao JX: Recent development of silica

nanoparticles as delivery vectors for cancer imaging

and therapy. Nanomedicine: Nanotechnology, Biology, and Medicine 2014, 10(2):297–312.

Lee JE, Lee N, Kim T, Kim J, Hyeon T: Multifunctional

Mesoporous Silica Nanocomposite Nanoparticles for

Theranostic Applications. Accounts of Chemical Research

, 44(10):893–902.

Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ: Mesoporous Silica Nanoparticle Nanocarriers:

Biofunctionality and Biocompatibility. Accounts of

Chemical Research 2013, 46(3):792–801.

Rosso-Vasic M, Spruijt E, Popovic Z, Overgaag K, van Lagen B, Grandidier B, Vanmaekelbergh D, Dominguez- Gutierrez D, De Cola L, Zuilhof H: Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. Journal of Materials Chemistry 2009, 19(33):5926–5933.

Wang Y, Huang R, Liang G, Zhang Z, Zhang P, Yu S,

Kong J: Theranostics: MRI-Visualized, Dual-Targeting,

Combined Tumor Therapy Using Magnetic Graphene-

Based Mesoporous Silica (Small 1/2014). Small

(Weinheim an der Bergstrasse, Germany) 2014, 10(1):1–1.

Patra HK, Khaliq NU, Romu T, Wiechec E, Borga M,

Turner APF, Tiwari A: MRI-Visual Order–Disorder

Micellar Nanostructures for Smart Cancer Theranostics.

Advanced Healthcare Materials 2014, 3(4):526–535.

Hall AP: The role of angiogenesis in cancer. Comparative Clinical Pathology 2005, 13(3):95–99.

Goldmann E: The Growth Of Malignant Disease

In Man And The Lower Animals. The Lancet 1907,


Ide AG, Baker, N. H. & Warren, S. L: Vascularization of the Brown-Pearce rabbit epithelioma transplant as

seen in the transparent ear chamber. Am J Radiol 1939,


Algire GHC, H. W.: Vascular reactions of normal and

malignant tissues in vivo. I. Vascular reactions of mice

to wounds and to normal and neoplastic transplants.

J Natl Cancer Inst USA 1945, 6:73–85.

Ehrmann RLK, M: Choriocarcinoma: Transfilter stimulation of vasoproliferation in the hamster cheek pouch studied by light and electron microscopy. J Natl Cancer Inst USA 1968, 41:1329–1341.

Greenblatt MS, P: Tumor angiogenesis: Transfilter

diffusion studies in the hamster by the transparant

chamber technique. J Natl Cancer Inst USA 1968,


Folkman J: Tumor angiogenesis: Therapeutic implications. The New England journal of medicine 1971,


Gullino PM: Angiogenesis and oncogenesis. Journal of the National Cancer Institute 1978, 61(3):639–643.

Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK et al: Tumor induction of VEGF promoter activity in stromal cells. Cell

, 94(6):715–725.

Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nature Medicine 2000, 6(4):389–395.

Abu El-Asrar AM, Nawaz MI, De Hertogh G, Al-Kharashi AS, Van den Eynde K, Mohammad G, Geboes K: The Angiogenic Biomarker Endocan is Upregulated in

Proliferative Diabetic Retinopathy and Correlates with

Vascular Endothelial Growth Factor. Current eye research 2014:1–11.

Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Annals of surgery 1972, 175(3):409–416.

Hagedorn M, Bikfalvi A: Target molecules for antiangiogenic therapy: from basic research to clinical

trials. Critical reviews in oncology/hematology 2000,


Folkman J, Klagsbrun M: Angiogenic factors. Science

(New York, NY) 1987, 235(4787):442–447.

Rundhaug JE: Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine 2005, 9(2):267–285.

Yancopoulos GD, Davis S, Gale NW, Rudge JS,

Wiegand SJ, Holash J: Vascular-specific growth

factors and blood vessel formation. Nature 2000,


Xue Y, Lim S, Yang Y, Wang Z, Jensen LD, Hedlund EM, Andersson P, Sasahara M, Larsson O, Galter D et al:

PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in

stromal cells. Nature Medicine 2012, 18(1):100–110.

Luque A, Carpizo DR, Iruela-Arispe ML: ADAMTS1/

METH1 Inhibits Endothelial Cell Proliferation by

Direct Binding and Sequestration of VEGF165. Journal

of Biological Chemistry 2003, 278(26):23656–23665.

Cross MJ, Claesson-Welsh L: FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences 2001, 22(4):201–207.

Morishita R, Aoki M, Hashiya N, Yamasaki K,

Kurinami H, Shimizu S, Makino H, Takesya Y, Azuma J,

Ogihara T: Therapeutic angiogenesis using hepatocyte

growth factor (HGF). Current gene therapy 2004, 4(2):


Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE: Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP- 1-induced protein (MCPIP). The Journal of Biological

Chemistry 2008, 283(21):14542–14551.

Fang S, Liu B, Sun Q, Zhao J, Qi H, Li Q: Platelet Factor 4 Inhibits IL-17/Stat3 Pathway via Upregulation of

SOCS3 Expression in Melanoma. Inflammation 2014.

ffrench-Constant C, Colognato H: Integrins: Versatile integrators of extracellular signals. Trends in cell biology 2004, 14(12):678–686.

O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994, 79(2):315–328.

Ahn JH, Lee HJ, Lee EK, Yu HK, Lee TH, Yoon Y, Kim SJ, Kim JS: Antiangiogenic kringles derived from human

plasminogen and apolipoprotein(a) inhibit fibrinolysis

through a mechanism that requires a functional lysinebinding site. Biological chemistry 2011, 392(4):347–356.

Ratel D, Mihoubi S, Beaulieu E, Durocher Y, Rivard GE, Gingras D, Beliveau R: VEGF increases the fibrinolytic

activity of endothelial cells within fibrin matrices:

Involvement of VEGFR-2, tissue type plasminogen

activator and matrix metalloproteinases. Thrombosis

Research 2007, 121(2):203–212.

Sun T, Yang Y, Luo X, Cheng Y, Zhang M, Wang K,

Ge C: Inhibition of Tumor Angiogenesis by Interferongamma by Suppression of Tumor-Associated

Macrophage Differentiation. Oncology Research 2014,


Wallez Y, Vilgrain I, Huber P: Angiogenesis: The VEcadherin switch. Trends in Cardiovascular Medicine 2006, 16(2):55–59.

SunYoung Park TAD, Elizabeth A. Scheef, Christine M. Sorenson, and Nader Sheibani: PECAM-1 regulates

proangiogenic properties of endothelial cells through

modulation of cell-cell and cell-matrix interactions.

Am J Physiol Cell Physiol 2010, 299(6): C1468–C1484.

Kim TH, Kim E, Yoon D, Kim J, Rhim TY, Kim SS:

Recombinant human prothrombin kringles have

potent anti-angiogenic activities and inhibit Lewis

lung carcinoma tumor growth and metastases.

Angiogenesis 2002, 5(3):191–201.

Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC

et al: Nitric oxide synthase modulates angiogenesis in

response to tissue ischemia. The Journal of clinical investigation 1998, 101(11):2567–2578.

Gately S, Li WW: Multiple roles of COX-2 in tumor

angiogenesis: a target for antiangiogenic therapy.

Seminars in Oncology 2004, 31(2 Suppl 7):2–11.

Shen JM, Gao FY, Yin T, Zhang HX, Ma M, Yang YJ,

Yue F: cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacological research: The Official Journal of the Italian Pharmacological Society 2013, 70(1):102–115.

Hoeben A, Landuyt B, Highley MS, Wildiers H, Van

Oosterom AT, De Bruijn EA: Vascular endothelial growth

factor and angiogenesis. Pharmacological Reviews 2004,


Fantin A, Vieira JM, Plein A, Denti L, Fruttiger M,

Pollard JW, Ruhrberg C: NRP1 acts cell autonomously

in endothelium to promote tip cell function during

sprouting angiogenesis. Blood 2013, 121(12):2352–2362.

Li J, Cui Y, Wang Q, Guo D, Pan X, Wang X, Bi H,

Chen W, Liu Z, Zhao S: The proliferation of malignant

melanoma cells could be inhibited by ranibizumab via

antagonizing VEGF through VEGFR1. Molecular Vision

, 20:649–660.

Ramjaun AR, Hodivala-Dilke K: The role of cell adhesion pathways in angiogenesis. The International Journal of Biochemistry & Cell Biology 2009, 41(3):521–530.

Francavilla C, Maddaluno L, Cavallaro U: The functional role of cell adhesion molecules in tumor angiogenesis. Seminars in cancer biology 2009, 19(5):298–309.

Muller JM: Potential inhibition of the neuro-neoplastic interactions: the clue of a GPCR-targeted therapy. Progress in experimental tumor research 2007, 39:130–153.

Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R: Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. European Journal of Cancer (Oxford, England: 1990) 2000, 36(5):675–681.

Dijkgraaf I, Boerman OC: Radionuclide imaging of

tumor angiogenesis. Cancer Biotherapy & Radiopharmaceuticals 2009, 24(6):637–647.

Fonsatti E, Altomonte M, Nicotra MR, Natali PG,

Maio M: Endoglin (CD105): A powerful therapeutic

target on tumor-associated angiogenetic blood vessels.

Oncogene 2003, 22(42):6557–6563.

Khemtong C, Kessinger CW, Ren J, Bey EA, Yang SG, Guthi JS, Boothman DA, Sherry AD, Gao J: In vivo

off-resonance saturation magnetic resonance imaging

of alphavbeta3-targeted superparamagnetic nanoparticles. Cancer Research 2009, 69(4):1651–1658.

Ribatti D, Ranieri G, Basile A, Azzariti A, Paradiso A, Vacca A: Tumor endothelial markers as a target in cancer. Expert opinion on therapeutic targets 2012, 16(12):1215–1225.

Sasaroli D, Gimotty PA, Pathak HB, Hammond R,

Kougioumtzidou E, Katsaros D, Buckanovich R,

Devarajan K, Sandaltzopoulos R, Godwin AK et al: Novel

surface targets and serum biomarkers from the ovarian

cancer vasculature. Cancer Biology & Therapy 2011,


Shokeen M, Anderson CJ: Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Accounts of Chemical Research 2009, 42(7):832–841.

Tucker GC: Integrins: molecular targets in cancer

therapy. Current Oncology Reports 2006, 8(2):96–103.

Ruoslahti E: RGD and other recognition sequences

for integrins. Annual Review of Cell and Developmental

Biology 1996, 12:697–715.

Garmy-Susini B, Varner JA: Roles of integrins in

tumor angiogenesis and lymphangiogenesis. Lymphatic

Research and Biology 2008, 6(3–4):155–163.

Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 2002, 110(6):673–687.

Takagi J, Petre BM, Walz T, Springer TA: Global

conformational rearrangements in integrin extracellular

domains in outside-in and inside-out signaling.

Cell 2002, 110(5):599–511.

Shattil SJ, Kim C, Ginsberg MH: The final steps of

integrin activation: The end game. Nature Reviews

Molecular Cell Biology 2010, 11(4):288–300.

Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS,

Ginsberg MH, Shattil SJ: SRC kinase activation by direct

interaction with the integrin beta cytoplasmic domain.

Proceedings of the National Academy of Sciences of the

United States of America 2003, 100(23):13298–13302.

Arregui CO, Balsamo J, Lilien J: Impaired integrinmediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. The Journal of Cell Biology 1998, 143(3):861–873.

Hangan-Steinman D, Ho WC, Shenoy P, Chan BM,

Morris VL: Differences in phosphatase modulation

of alpha4beta1 and alpha5beta1 integrin-mediated

adhesion and migration of B16F1 cells. Biochemistry

and cell biology = Biochimie et biologie cellulaire 1999,


Goel HL, Fornaro M, Moro L, Teider N, Rhim JS, King

M, Languino LR: Selective modulation of type 1 insulinlike

growth factor receptor signaling and functions

by beta1 integrins. The Journal of Cell Biology 2004,


Walker JL, Fournier AK, Assoian RK: Regulation of

growth factor signaling and cell cycle progression by

cell adhesion and adhesion-dependent changes in

cellular tension. Cytokine & Growth Factor Reviews 2005,


Brooks PC, Clark RA, Cheresh DA: Requirement of

vascular integrin alpha v beta 3 for angiogenesis.

Science (New York, NY) 1994, 264(5158):569–571.

Gladson CL: Expression of integrin alpha v beta 3 in

small blood vessels of glioblastoma tumors. Journal of

neuropathology and experimental neurology 1996, 55(11): 1143–1149.

Drake CJ, Cheresh DA, Little CD: An antagonist of

integrin alpha v beta 3 prevents maturation of blood

vessels during embryonic neovascularization. Journal of

Cell Science 1995, 108 (Pt7):2655– 2661.

Friedlander M, Brooks PC, Shaffer RW, Kincaid CM,

Varner JA, Cheresh DA: Definition of two angiogenic

pathways by distinct alpha v integrins. Science (New York, NY) 1995, 270(5241):1500–1502.

Sheldrake HM, Patterson LH: Function and antagonism of beta3 integrins in the development of cancer therapy. Current

Cancer Drug Targets 2009, 9(4):519–540.

Ruoslahti E, Pierschbacher MD: New perspectives in cell adhesion: RGD and integrins. Science (New York, NY)

, 238(4826):491–497.

Temming K, Schiffelers RM, Molema G, Kok RJ:

RGDbased strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug resistance updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy 2005, 8(6):381–402.

Liu S: Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor

imaging. Molecular pharmaceutics 2006, 3(5):472–487.

Bergelson JM, Shepley MP, Chan BM, Hemler ME,

Finberg RW: Identification of the integrin VLA-2 as a

receptor for echovirus 1. Science (New York, NY) 1992,


Leininger E, Roberts M, Kenimer JG, Charles IG,

Fairweather N, Novotny P, Brennan MJ: Pertactin, an Arg-

Gly-Asp-containing Bordetella pertussis surface protein

that promotes adherence of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 1991, 88(2):345–349.

Calvete JJ: Structure-function correlations of snake

venom disintegrins. Current Pharmaceutical Design 2005, 11(7):829–835.

Marcinkiewicz C: Functional characteristic of snake

venom disintegrins: Potential therapeutic implication.

Current Pharmaceutical Design 2005, 11(7):815–827.

Kim JW, Lee HS: Tumor targeting by doxorubicin-

RGD-4C peptide conjugate in an orthotopic mouse

hepatoma model. International Journal of Molecular

Medicine 2004, 14(4):529–535.

Grunhagen DJ, Brunstein F, ten Hagen TL, van Geel AN, de Wilt JH, Eggermont AM: TNF-based isolated limb

perfusion: a decade of experience with antivascular

therapy in the management of locally advanced extremity soft tissue sarcomas. Cancer treatment and research 2004, 120:65–79.

Chen CW, Yeh MK, Shiau CY, Chiang CH, Lu DW:

Efficient downregulation of VEGF in retinal

pigment epithelial cells by integrin ligand-labeled

liposome-mediated siRNA delivery. International Journal

of Nanomedicine 2013, 8:2613–2627.

Wu C, Gong F, Pang P, Shen M, Zhu K, Cheng D, Liu Z, Shan H: An RGD-modified MRI-visible polymeric

vector for targeted siRNA delivery to hepatocellular

carcinoma in nude mice. PLoS One 2013, 8(6):e66416.

Sun Y, Zhu X, Peng J, Li F: Core-shell lanthanide

upconversion nanophosphors as four-modal probes

for tumor angiogenesis imaging. ACS Nano 2013,


Lim EK, Kim B, Choi Y, Ro Y, Cho EJ, Lee JH, Ryu SH,

Suh JS, Haam S, Huh YM: Aptamer-conjugated magnetic

nanoparticles enable efficient targeted detection of

integrin alphavbeta3 via magnetic resonance imaging.

Journal of biomedical materials research Part A 2013.

Maeda H, Sawa T, Konno T: Mechanism of tumortargeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release: Official Journal of the Controlled Release Society 2001, 74(1–3):47–61.

Ahn KY, Ko HK, Lee BR, Lee EJ, Lee JH, Byun Y,

Kwon IC, Kim K, Lee J: Engineered protein nanoparticles

for in vivo tumor detection. Biomaterials 2014,


Schmieder AH, Caruthers SD, Zhang H, Williams TA,

Robertson JD, Wickline SA, Lanza GM: Three-dimensional

MR mapping of angiogenesis with alpha5beta1(alpha

nu beta3)-targeted theranostic nanoparticles in the

MDA-MB-435 xenograft mouse model. FASEB Journal:

Official Publication of the Federation of American Societies for Experimental Biology 2008, 22(12):4179–4189.

Kessinger CW TO, Khemtong C, Huang G, Takahashi M, Gao J: Investigation of In Vivo Targeting Kinetics of

αvβ3-Specific Superparamagnetic Nanoprobes by

Time-Resolved MRI. Theranostics 2011(1):263–273.

Swain M, Thirupathi R, Krishnarjuna B, Eaton EM,

Kibbey MM, Rosenzweig SA, Atreya HS: Spontaneous

and reversible self-assembly of a polypeptide fragment

of insulin-like growth factor binding protein-2 into

fluorescent nanotubular structures. Chemical Communications (Cambridge, England) 2010, 46(2):216–218.

Li ZB, Chen K, Chen X: (68)Ga-labeled multimeric

RGD peptides for microPET imaging of integrin

alpha(v)beta (3) expression. European Journal of Nuclear Medicine and Molecular Imaging 2008, 35(6):1100–1108.

Mammen M, Choi S-K, Whitesides GM: Polyvalent

Interactions in Biological Systems: Implications for

Design and Use of Multivalent Ligands and Inhibitors.

Angewandte Chemie International Edition 1998, 37(20):


Ye Y, Bloch S, Xu B, Achilefu S: Design, synthesis, and evaluation of near infrared fluorescent multimeric

RGD peptides for targeting tumors. J Med Chem 2006,


Kai Chen JX, Hengyi Xu, Deepak Beher, Mark Michalski, Sandip Biswal, Andrew Wang and Xiaoyuan Chen: Triblock Copolymer Coated Iron Oxide Nanoparticle Conjugate for Tumor Integrin Targeting. Biomaterials 2009, 30(36):6912–6919.

Jarzyna PA, Deddens LH, Kann BH, Ramachandran S, Calcagno C, Chen W, Gianella A, Dijkhuizen RM, Griffioen AW, Fayad ZA et al: Tumor angiogenesis phenotyping by nanoparticle-facilitated magnetic resonance and nearinfrared fluorescence molecular imaging. Neoplasia (New York, NY) 2012, 14(10):964–973.


  • There are currently no refbacks.