High Value of Proton Relaxivity Achieved by Graphene Oxide-Cobalt Ferrite Nanoparticle Composite: A Potential Contrast Agent in Magnetic Resonance Imaging

Venkatesha N, Ashwini R, Pavan Poojar, Sairam Geethanath, Chandan Srivastava


This work investigates the potential of graphene oxide-cobaltferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and inthe second step CoFe2O4 nano particles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM-1s-1. This valueof proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Full Text:



R.D. Henderson, “Nuclear magnetic resonance imaging:

A review”, Journal of the Royal Society of Medicine 76,


C.S. McKinstry, “Nuclear magnetic resonance imaging in

medicine”, The Ulster Medical Journal 55(2), 97 (1986).

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander,

N. Muller N, “Magnetic iron Oxide nanoparticles: synthesis,

stabilization, vectorization, physicochemical characterizations,

and biological applications”, Chemical Review

(6), 2064 (2008).

N.A. Frey, S. Peng, K. Cheng, S. Sun, “Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage”, Chemical Society

Review 38(9), 2532 (2009).

M.D. Shultz, S. Calvin, P.P. Fatouros, S.A. Morrison,

E.E. Carpenter, “Enhanced ferrite nanoparticles as MRI

contrast agents”, Journal of Magnetism and Magnetic

Material 311(1), 464 (2007).

S.H. Choi, W.K. Moon, “Contrast-enhanced MR imaging

of lymph nodes in cancer patients”, Korean Journal of

Radiology 11, 383 (2010).

H.B. Na, I.C. Song, T. Hyeon, “Inorganic nanoparticles

for MRI contrast agents”, Advance Materials 21, 2133


H. Koichiro, N. Michihiro, S. Wataru, Y. Toshinobu,

M. Hirokazu, O. Shuji, A. Masahiro, M. Toshio, I. Kazunori,

“Superparamagnetic nanoparticle clusters for cancer

theranostics combining magnetic resonance imaging and

hyperthermia treatment”, Theranostics 3(6), 366 (2013).

S.H. Koenig, K.E. Kellar, “Theory of 1/T1 and 1/T2 NMRD

profiles of solutions of magnetic nanoparticles”, Magnetic

Resonance in Medicine 34, 227 (1995).

E. Terreno, D.D. Castelli, A. Viale, S. Aime, “Challenges

for molecular magnetic resonance imaging”, Chemical

Review 110(5), 3019 (2010).

H. Sungwook, C. Yongmin, R. Ilsu, “Chitosan-coated

ferrite (Fe3O4) nanoparticles as a T2 contrast agent for

magnetic resonance imaging”, Journal of Korean Physical

Society 56(3), 868 (2010).

S.M. Hoque, C. Srivastava, N. Venkatesha, A. Kumar,

K. Chattopadhyay, “Superpamagnetic behaviour and

T1, T2 relaxivity of ZnFe2O4 nanoparticles for magnetic

resonance imaging”, Philosophical Magazine 94(14),


S.M. Hoque, C. Srivastava, N. Srivastava, N. Venkatesha,

K. Chattopadhyay, “Synthesis and characterization of Fe

and Co based ferrite nanoparticles and study of the T1

and T2 relaxivity of chitogen coated particles”, Journal of

Materials Science 48(2), 812 (2013).

Y.X. Wang, “Superparamagnetic iron oxide based MRI

contrast agents: Current status of clinical application”,

Quantitative Imaging and Medical Surgery 1, 35 (2011).

W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng, Z. Zhang,

“Composites of aminodextran-coated Fe3O4 nanoparticles

and Graphene Oxide for cellular magnetic resonance

imaging”, ACS Applied Materials and Interfaces 3, 4085


H. Wu, G. Liu, Y. Zhuang, D. Wu, H. Zhang, H. Yang,

H. Hu, S. Yang, “The behavior after intravenous injection

in mice of multiwalled carbon nanotube-Fe3O4 hybrid

MRI contrast agents”, Biomaterials 32(21), 4867 (2011).

G. Lamanna, A. Garofalo, G. Popa, C. Wilhelm,

S. Bégin-Colin, D. Felder-Flesch, A. Bianco, F. Gazeau,

C. Ménard-Moyon, “Endowing carbon nanotubes with

superparamagnetic properties: applications for cell labeling,

MRI cell tracking and magnetic manipulations”,

Nanoscale 5, 4412 (2013).

X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li,

L. Guo, Z. Liu, “A functionalized graphene oxide-iron

oxide nanocomposite for magnetically targeted drugdelivery, photothermal therapy, and magnetic resonance

imaging”, Nano Research 5(3), 199 (2012).

S.M. Hoque, C. Srivastava, N. Venkatesha, K. Chattopadyay, “Synthesis, characterisation and nuclear magnetic resonance study of Chitosan-coated Mn1-xZnxFe2O4 nanocrystals”, IEEE Transactions on Nanobioscience 12(4), 298, (2013).

H.B. Na, I.C. Song, T. Hyeon, “Inorganic nanoparticles for

MRI contrast agents”, Advanced Materials 21, 2133 (2009).

L. Feng, L. Wu, X. Qu, “New horizons for diagnostics

and therapeutic applications of graphene and graphene

oxide”, Advanced Materials 25, 168 (2013).

W.S. Hummers, R.E. Offeman, “Preparation of graphitic

oxide”, Journal of American Chemical Society 80, 1339


D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii,

Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour,

“Improved synthesis of Graphene Oxide”, ACS Nano 4,


M. Nidhin, S.S. Nazeer, R.S Jayasree, M.S. Kiran, B.U. Naira, K.J. Sreeram, “Flower shaped assembly of cobalt ferrite

nanoparticles: Application as T2 contrast agent in MRI”,

RSC Advances 3, 6906 (2013).

H.M. Joshi, Y.P. Lin, M. Aslam, P.V. Prasad,

E.A. SchultzSikm, R. Edelman, T. Meade, V.P. Dravid,

“Effects of shape and size of cobalt ferrite nanostructures

on their MRI contrast and thermal activation”, Journal of

Physical Chemistry C Nanomaterial Interfaces 113(41),


F. Liu, S. Laurent, A. Roch, L.V. Elst, R.N. Muller,

“Size-Controlled synthesis of CoFe2O4 nanoparticles

potential contrast agent for MRI and investigation on

their size-dependent magnetic properties”, Hindawi

Publishing Corporation Journal of Nanomaterials

Volume 2013.


  • There are currently no refbacks.