Frustration in Optical Lattices of Interacting Bosons

Subroto Mukerjee


The realization of optical lattices of cold atoms has opened up the possibility of engineering interacting lattice systems of bosons and fermions, stimulating a frenzy of research over the last decade.  More recently, experimental techniques have been developed to apply synthetic gauge fields to these optical lattices. As a result, it has become possible to study quantum Hall physics and the effects of frustration in lattices of cold atoms. In this article we describe the combined effect of frustration and interactions on the super fluidity of bosons. By focussing on a frustrated ladder of interacting bosons, we show that the effect of frustration is for “chiral” order to develop, which manifests itself as an alternating pattern of circulating super currents. Remarkably, this order persists even when super fluidity is lost and the system enters a Mott phase giving rise to a novel chiral Mott insulator. We describe the combined physics of frustration and interactions by studying a fully frustrated one dimensional model of interacting bosons. The model is studied using mean-field theory, a direct quantum simulation and a higher dimensional classical theory in order to offer a full description of the different quantum phases contained in it and transitions between the different phases. In addition we provide physical descriptions of the chiral Mott insulator as a vortex-anitvortex super solid and indirect excitonic condensate in addition to obtaining a variational wave function for it. We also briefly describe of the chiral Mott states arising in other microscopic models.

Full Text:



M. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell, Science 269, 198 (1995).

K. Davis, M.-O. Mewes, M.v. Andrews, N. Van Druten, D. Durfee, D. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,


S. Bose, Z. Physik 26, 178 (1924).

A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. p. 261 (1924).

A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. p. 3 (1925).

D. Stamper-Kurn, M. Andrews, A. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).

M. Greiner, C. Regal, and D. Jin, Nature 426, 537 (2003).

W. Zwerger, e BCS-BEC crossover and the unitary Fermi gas, vol. 836 (Springer, 2011).

M. Fisher, P. Weichman, G. Grinstein, and D. Fisher, Phys. Rev. B 40, 546 (1989).

M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature 415, 39 (2002).

R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, Nature 455, 204 (2008).

M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger, Physical review letters 94, 080403 (2005).

J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Reviews of Modern Physics 83, 1523 (2011).

R. Dum and M. Olshanii, Physical review letters 76, 1788(1996).

Y.-J. Lin, R. Compton, K. Jimenez-Garcia, J. Porto, and I. Spielman, Nature 462, 628 (2009).

H. Miyake, G. Siviloglou, C. Kennedy, W. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).

M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Appl. Phys. B 113, 1 (2013).

K. Jimenez-Garcia, L. LeBlanc, R. Williams, M. Beeler, A. Perry, and I. Spielman, Phys. Rev. Lett. 108, 225303 (2012).

J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock,

and P. Windpassinger, Phys. Rev. Lett. 108, 225304 (2012).

J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, et al., Nat. Phys. 9, 738 (2013).

D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

Y.-J. Lin, K. Jimenez-Garcia, and I. Spielman, Nature 471, 83 (2011).

P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

L. Cheuk, A. Sommer, Z. Hadzibabic, T. Yefsah, W. Bakr, and M. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012).

C. Kennedy, G. Siviloglou, H. Miyake, W. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 225301 (2013).

M. Aidelsburger, M. Atala, M. Lohse, J. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301


C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

L. Fu, C. Kane, and E. Mele, Phys. Rev. Lett. 98, 106803 (2007).

R. Roy, Phys. Rev. B 79, 195322 (2009).

M. Beeler, R. Williams, K. Jimenez-Garcia, L. LeBlanc, A. Perry, and I. Spielman, Nature 498, 201 (2013).

L.-K. Lim, C. Smith, and A. Hemmerich, Phys. Rev. Lett. 100, 130402 (2008).

V. Stojanović, C. Wu, W. Liu, and S. Das Sarma, Phys. Rev. Lett. 101, 125301 (2008).

M. Polini, R. Fazio, A. MacDonald, and M. Tosi, Phys. Rev.Lett. 95, 010401 (2005).

G. Wirth, M. Olschlager, and A. Hemmerich, Nat. Phys. 7, 147 (2011).

S. Sinha and K. Sengupta, Europhys. Lett. 93, 30005 (2011).

A. Dhar, M. Maji, T. Mishra, R. Pai, S. Mukerjee, and A. Paramekanti, Phys. Rev. A 85, 041602 (2012).

A. Dhar, T. Mishra, M. Maji, R. Pai, S. Mukerjee, and A. Paramekanti, Phys. Rev. B 87, 174501 (2013).

M. Zaletel, S. Parameswaran, A. Rüegg, and E. Altman, Phys. Rev. B 89, 155142 (2014).

A. Tokuno and A. Georges, ArXiv e-prints (2014), 1403.0413.

A. Petrescu and K. Le Hur, Phys. Rev. Lett. 111, 150601 (2013).

S. Teitel and C. Jayaprakash, Phys. Rev. B 27, 598 (1983).

P. Olsson, Phys. Rev. Lett. 75, 2758 (1995).

E. Granato, Phys. Rev. B 48, 7727 (1993).

E. Granato, Journal of Applied Physics 75, 6960 (1994).

P. Olsson, Phys. Rev. Lett. 75, 2758 (1995).

S. White, Phys. Rev. Lett. 69, 2863 (1992).

U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

H. Weber and P. Minnhagen, Phys. Rev. B 37, 5986 (1988).

K. Binder and D. Heermann, Monte Carlo simulation in statistical physics: an introduction (Springer, 2010).

Y. Nishiyama, Eur. Phys. J. B 17, 295 (2000).


  • There are currently no refbacks.