Comparative Structural Proteomics of Allergenic Proteins from Plant Pollen

Dinakar M Salunke, Jasmita Gill, Alka Dwevedi


Major sources of allergy from plants are seeds and pollens. A large number of protein antigens have been identified to be causative agents of allergy and possible biochemical and structural attributes of these molecules have been explored. The studies so far have not been able to provide clear mechanistic details that could be generalized. The reason for this could be that the studies have not been systematically explored. The structural proteomics approaches adopted in our laboratory is an attempt in this direction to establish the structural basis of allergenicity. Known crystallographic structures of proteins from plant pollens have been analyzed in this context.

Full Text:



B. Wüthrich, Clinical aspects, epidemiology, and prognosis of atopic dermatitis, Annals of Allergy, Asthma & Immunology, 83, 464–470 (1999).

L. Gough, E. Campbell, D. Bayley, G. Van Heeke, and F. Shakib, Proteolytic activity of the house dust mite allergen Der p 1 enhances allergenicity in a mouse inhalation model, Clin Exp Allergy, 33, 1159–1163 (2003).

N.E. Eriksson, H. Formgren, and E. Svenonius, Food hypersensitivity in patients with pollen allergy, Allergy, 37, 437–443 (1982).

S. Padavattan, S. Flicker, T. Schirmer, C. Madritsch, S. Randow, G. Reese, S. Vieths, C. Lupinek, C. Ebner, R. Valenta, and Z. Markovic´-Housley, High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by x-ray crystallography J Immunol., 182, 2141–2151 (2009).

C. Radauer, P. Lacknerand, and H. Breiteneder, The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands, BMC Evolutionary Biology, 8, 286 (2008).

O. Mirza, A. Henriksen, H. Ipsen, J.N. Larsen, M. Wissenbach, M.D. Spangfort, and M. Gajhede, Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1, J Immunol, 165, 331–338 (2000).

Z. Markovic´-Housley, M. Degano, D. Lamba, E. Roepenack- Lahaye, S. Clemens, M. Susani, F. Ferreira, O. Scheiner, and H. Breiteneder, Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier, J Mol Biol., 325, 123–133 (2003).

S. Kofler, C. Asam, U. Eckhard, M. Wallner, F. Ferreira, and H. Brandstetter, Crystallographically mapped ligand binding differs in high and low IgE binding isoforms of birch pollen allergen Bet v 1, J Mol Biol., 422, 109–123 (2012).

R. Valenta, B. Hayek, S. Seiberler, A. Bugajska-Schretter, V. Niederberger, A. Twardosz, S. Natter, L. Vangelista, A. Pastore, S. Spitzauer, and D. Kraft, Calcium-binding allergens: from plants to man, Int. Arch. Allergy Immunol., 117, 160–166 (1998).

P. Verdino, K. Westritschnig, R. Valenta, and W. Keller, The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly, EMBO J., 21, 5007–16 (2002).

P. Verdino, R. Barderas, M. Villalba, K. Westritschnig, R. Valenta, R. Rodriguez, and W. Keller, Three-dimensional structure of the cross-reactive pollen allergen Che a 3: visualizing cross-reactivity on the molecular surfaces of weed, grass, and tree pollen allergens, J Immunol., 180, 2313–21 (2008).

K. Kannan, and D.J. Pierre Moens, Structure and functions of profilins, Biophysical Reviews, 1, 71–81 (2009).

A.A. Fedorov, T. Ball, N.M. Mahoney, R. Valenta, and S.C. Almo, The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profiling, Structure, 5, 33–45 (1997).

K. Rajashankar, A. Bufe, W. Weber, S. Eschenburg, B. Lindner, and C. Betzel, Structure of the functional domain of the major grass-pollen allergen Phlp 5b, Acta Crystallogr D, 58, 175–181 (2002).

E.W. Czerwinski, T. Midoro-Horiuti, M.A. White, E.G. Brooks, and R.M. Goldblum, Crystal structure of Jun a 1, the major cedar pollen allergen from Juniperus ashei, reveals a parallel b-helical core, J Biol Chem., 280, 3740–3746 (2005).

O. Ivanciuc, C.H. Schein, and W. Braun, SDAP: database and computational tools for allergenic proteins, Nucleic Acids Research, 31, 359–362 (2003).

R.C. Aalberse, Structural biology of allergens, J Allergy Clin Immunol., 106, 228–238 (2000).

R. Bredehorst, and K. David, What establishes a protein as an allergen? J Chromatogr B, 756, 33–40 (2001).

S. Vieths, S. Scheurer, and B. Ballmer-Weber, Current understanding of cross-reactivity of food allergens and pollen, Ann N Y Acad Sci., 964, 47–68 (2002).

J.L. Brewbaker, and B.H. Kwack, The essential role of calcium ion in pollen germination and pollen tube growth, Am. J. Bot., 50, 859–865 (1963).

V.E. Franklin-Tong, Signaling and the modulation of pollen tube growth, Plant Cell, 11, 727–738 (1999).

R. Valenta, M. Duchene, C. Ebner, P. Valent, C. Sillaber, P. Deviller, F. Ferreira, M. Tejkl, H. Edelmann, and D. Kraft, Profilins constitute a novel family of functional plant panallergens, J Exp Med., 175, 377–385 (1992).

A. Mari, Multiple pollen sensitization: a molecular approach to the diagnosis, Int Arch Allergy Immunol., 125, 57–65 (2001).

E. Untersmayr, and E. Jensen-Jarolim, Mechanisms of type I food allergy, Pharmacology & Therapeutics, 112, 787–798 (2006).

H. Breiteneder, and E.N. Clare Mills Molecular properties

of food allergens, J Allergy Clin Immunol., 115, 14–23


K.C. Barnes, Genetic epidemiology of health disparities in

allergy and clinical immunology, J Allergy Clin Immunol.,

, 243–254 (2006).


  • There are currently no refbacks.