ISOBARIC VAPOUR LIQUID EQUILIBRIUM STUDIES ON DI (iso) PROPYL ETHER-CYCLOHEXANE SYSTEM

BY S. V. VIJAYARAGHAVAN, P. K. DESHPANDE AND N. R. KULOOR
(Department of Chemical Engineering, Indian Institute of Science, Bangalore-12)

Received on January 9, 1965

ABSTRACT

Vapour-liquid equilibrium data for the system di (iso) propyl ether-cyclohexane are reported. The thermodynamic consistency of the data is tested with Chao’s modified Redlich-Kister equation.

Vapour liquid equilibrium data for the system di (iso) propyl ether-cyclohexane are not available in the literature. Hence the system has been studied under isobaric condition at 684 ± 2.5 mm of Hg.

EXPERIMENTAL

The equilibrium still has been described earlier and is a modified Ellis and Garbett still. As the system is completely miscible, the still is operated without stirrers for three hours to attain equilibrium and samples are drawn for analysis.

Samples are analysed by the determination of refractive index using Abbe’s refractometer at a temperature of 25 ± 0.1°C.

Di (iso) propyl ether and cyclohexane of BDH laboratory reagent quality are used. The density and refractive index of reagents used and also literature values are given in table I.
Table I

Properties of pure components

<table>
<thead>
<tr>
<th>Compound</th>
<th>Density Exptl.</th>
<th>Density Lit.</th>
<th>Refractive index Exptl.</th>
<th>Refractive index Lit.</th>
<th>Boiling points °C, 685 mm Hg Exptl.</th>
<th>Boiling points °C, 685 mm Hg Lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di (iso) propyl ether</td>
<td>0.7250<sup>20</sup>°C</td>
<td>0.7258<sup>20</sup>°C</td>
<td>1.3672<sup>23</sup>°C</td>
<td>1.3678<sup>23</sup>°C</td>
<td>64.4</td>
<td>64.3</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>0.7780<sup>20</sup>°C</td>
<td>0.7786<sup>20</sup>°C</td>
<td>1.4262<sup>20</sup>°C</td>
<td>1.4262<sup>20</sup>°C</td>
<td>77.1</td>
<td>77.3</td>
</tr>
</tbody>
</table>

Thermodynamic Consistency

The experimental vapour liquid equilibrium data are presented in Table II. Liquid phase activity coefficients are calculated from the equation,

\[
\gamma_i = \frac{\gamma_i \cdot \pi}{x_i \cdot P_i}
\]

<table>
<thead>
<tr>
<th>No.</th>
<th>Temp. °C</th>
<th>Mole % of di (iso) propyl ether in liquid</th>
<th>γ1</th>
<th>γ2</th>
<th>γ1 calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.6</td>
<td>5.4</td>
<td>9.4</td>
<td>1.189</td>
<td>1.004</td>
</tr>
<tr>
<td>2</td>
<td>73.9</td>
<td>12.6</td>
<td>19.7</td>
<td>1.152</td>
<td>1.015</td>
</tr>
<tr>
<td>3</td>
<td>72.8</td>
<td>17.8</td>
<td>26.1</td>
<td>1.121</td>
<td>1.033</td>
</tr>
<tr>
<td>4</td>
<td>71.8</td>
<td>23.7</td>
<td>32.9</td>
<td>1.096</td>
<td>1.044</td>
</tr>
<tr>
<td>5</td>
<td>70.4</td>
<td>32.5</td>
<td>42.4</td>
<td>1.074</td>
<td>1.060</td>
</tr>
<tr>
<td>6</td>
<td>69.6</td>
<td>39.3</td>
<td>49.0</td>
<td>1.053</td>
<td>1.071</td>
</tr>
<tr>
<td>7</td>
<td>68.9</td>
<td>45.5</td>
<td>55.1</td>
<td>1.044</td>
<td>1.073</td>
</tr>
<tr>
<td>8</td>
<td>68.3</td>
<td>52.1</td>
<td>61.0</td>
<td>1.031</td>
<td>1.084</td>
</tr>
<tr>
<td>9</td>
<td>67.2</td>
<td>64.2</td>
<td>71.6</td>
<td>1.014</td>
<td>1.093</td>
</tr>
<tr>
<td>10</td>
<td>66.5</td>
<td>72.8</td>
<td>78.5</td>
<td>1.003</td>
<td>1.115</td>
</tr>
<tr>
<td>11</td>
<td>65.6</td>
<td>84.3</td>
<td>87.7</td>
<td>0.995</td>
<td>1.138</td>
</tr>
<tr>
<td>12</td>
<td>65.2</td>
<td>90.4</td>
<td>92.5</td>
<td>0.989</td>
<td>1.147</td>
</tr>
</tbody>
</table>
The vapour pressure of cyclohexane for various temperatures is calculated from the equation:

$$\log_{10} P (\text{mm}) = 6.84498 - \frac{1203.526}{222.863 + t}$$

Since such an equation is not available for di (iso) propyl ether, an equation has been formulated with the data available:

$$\log_{10} P (\text{mm}) = -\frac{1581.0}{T} + 7.5218$$

FIG. 1

Di (iso) propyl ether—Cyclohexane

x Vs. y
FIG. II
Di (iso) propyl ether—Cyclohexane
$T_x - x - y$
Di (iso) propyl ether—Cyclohexane

\[\log \gamma \text{ Vs. } x \]
FIG. IV
Di (iso) propyl ether—Cyclohexane
\[\log \frac{\gamma_1}{\gamma_2} \text{ Vs. } x \]
The system does not form an azeotrope. As can be seen from table II, the values of activity coefficients do not differ very much from the value of 1.0, but for correlation, the system has been considered as non-ideal.

The thermodynamic consistency of the data obtained is tested by Chao's modified Redlich-Kister equation\(^3\). The values of constants in equation,

\[\log \left(\frac{y_1}{y_2} \right) = a + b \left(x_2 - x_1 \right) + c \left(6x_1 x_2 - 1 \right) + d \left(x_2 - x_1 \right) \left(1 - 8x_1 x_2 \right) \]

are as follows:

\[a = -0.0107; \quad b = +0.0708; \quad c = -0.0242; \quad d = +0.0052 \]

The average value of \(\frac{(y_1 \text{ experimental} - y_1 \text{ calculated})}{(y_1 \text{ experimental})} \) is 1.07%.

The data satisfy the Herington's test\(^4\) for the consistency, since the experimental \(D - J = -3.594 < 0 \).

NOMENCLATURE

- \(a, b, c, d \) = Constants in Chao's equation
- \(P \) = Vapour pressure of pure component
- \(x \) = Mole fraction in liquid phase
- \(y \) = Mole fraction in vapour phase
- \(\gamma \) = Activity coefficient
- \(\pi \) = Total pressure
- \(t \) = Temperature °C

SUBSCRIPTS

- \(1 \) = Di (iso) propyl ether
- \(2 \) = Cyclohexane

REFERENCES