Short Communication

Some results on the independence number of a graph

DĂNUT MARCU
Str. Pasului 3, Sector 2, 020795-Bucharest, Romania
emails: drmarcu@yahoo.com, danutmarcu@romtelecom.ro

Abstract
In this paper, we give new lower bounds for the independence number \(\alpha(G) \) of a finite and simple graph \(G \).

Keywords: Graphs, independence number, lower bounds.

Graphs, considered here, are finite and simple (without loops or multiple edges), and [1], [2] are followed for terminology and notation. Let \(G = (V, E) \) be an undirected graph, with the set of vertices \(V = \{ v_1, v_2, \ldots, v_n \} \) and the set of edges \(E \), such that \(|E| = m \).

We denote by \(d(v) \) the degree of a vertex \(v \) in \(G \). It is well known (e.g. see [2]) that \(\alpha(G) = \sum_{i=1}^{n} d(v_i) = 2m \).

Let \(\delta_i(v) \) be the number of vertices having the distance \(i \) from a vertex \(v \) of \(G \) and let \(\alpha(G) \) be the independence number of \(G \).

LEMMA 1. If \(G \) is a triangle-free graph, then
\[
\alpha(G) \geq \alpha^*(G) = \sum_{v \in V} \delta_1(v)/(1 + \delta_1(v) + \delta_2(v)).
\]

Proof. We randomly label the vertices of \(G \) with a permutation of the integers from 1 to \(n \). Let \(S \subseteq V \) be the set of vertices \(v \) for which the minimum label on vertices at distance 0, 1 or 2 from \(v \) is on a vertex at distance 1. Obviously, the probability that \(S \) contains a vertex \(v \) is given by \(\delta_1(v)/(1 + \delta_1(v) + \delta_2(v)) \) and, therefore, the expected size of \(S \) is equal to \(\alpha^*(G) \). Moreover, \(S \) must be an independent set of \(G \), since, otherwise, if \(S \) contains an edge it is easy to see that it must lie in a triangle of \(G \), contradicting the hypothesis. Thus, the lemma is proved.

THEOREM 1. If \(G \) is a triangle- and pentagon-free graph with \(m \) edges, then \(\alpha(G) \geq \sqrt{m} \).

Proof. Let \(d(G) \) be the average degree of vertices of \(G \). Since \(G \) is a triangle- and pentagon-free graph, then we have \(\alpha(G) \geq \delta_1(v) \), by considering the neighbours of \(v \), and \(\alpha(G) \geq 1 + \delta_2(v) \), by considering \(v \) and the vertices at distance 2 from \(v \), for any vertex \(v \) of \(G \). Thus, by the above lemma, \(\alpha(G) \geq \alpha^*(G) \geq \sum_{v \in V} \delta_1(v)/2 \alpha(G) \), that is,
\[
\alpha(G)^2 \geq nd(G)/2 \text{ or } \alpha(G) \geq \sqrt{nd(G)/2}.
\]
But, \(d(G) \geq \sigma(G)/n = 2m/n \) and, therefore, \(\alpha(G) \geq \sqrt{m} \), the theorem being proved.

LEMMA 2. If \(G \) is a graph with an odd girth \(2k+3 \) (\(k \geq 2 \)) or greater, then
\[
\alpha(G) \geq \sum_{v \in V} (\frac{1}{2} (1 + \delta_1(v) + \ldots + \delta_{k-1}(v)))/ (1 + \delta_1(v) + \ldots + \delta_k(v)).
\]
Proof. We randomly label the vertices of G with a permutation of the integers from 1 to n. Let $S_1 \subseteq V$ (respectively $S_2 \subseteq V$) be the set of vertices v for which the minimum label on vertices at distance k or less from v is at even (respectively odd) distance $k - 1$ or less. It is easy to see that S_1 and S_2 are independent sets and that the expected size of $S_1 \cup S_2$ is given by

$$\sum_{v \in V} (1 + \delta_1(v) + \ldots + \delta_{k-1}(v))/(1 + \delta_1(v) + \ldots + \delta_k(v)),$$

the lemma being proved.

THEOREM 2. If G is a graph with an odd girth $2k + 3$ ($k \geq 2$) or greater, then $\alpha(G) \geq 2^{-(k - 1)/k} (\sum_{v \in V} \delta_1(v)^{1/(k-1)})^{(k - 1)/k}$.

Proof. By Lemma 1 and applying Lemma 2 for all the values between 3 and k, we have,

$$\alpha(G) \geq \sum_{v \in V} \delta_1(v)/(1 + \delta_1(v) + \delta_2(v)) + \frac{1}{2} ((1 + \delta_1(v) + \delta_2(v))/(1 + \delta_1(v) + \delta_2(v) + \delta_3(v))) + \ldots + \frac{1}{2} ((1 + \delta_1(v) + \ldots + \delta_{k-1}(v))/(1 + \delta_1(v) + \ldots + \delta_k(v)))/(k - 1).$$

Since the arithmetic mean is greater than the geometric mean, then

$$\alpha(G) \geq \sum_{v \in V} ((\delta_1(v) 2^{-(k - 2)})/(1 + \delta_1(v) + \ldots + \delta_k(v)))^{1/(k - 1)}.$$

Since the vertices at even (odd) distance less than or equal to k from any vertex v of G form independent sets, then

$$2\alpha(G) \geq 1 + \delta_1(v) + \ldots + \delta_k(v).$$

Thus,

$$\alpha(G) \geq \sum_{v \in V} (\delta_1(v)/2^{k-1} \alpha(G))^{1/(k-1)}$$

or

$$\alpha(G)^{k/(k-1)} \geq \frac{1}{2} (\sum_{v \in V} \delta_1(v)^{1/(k-1)})$$

or

$$\alpha(G) \geq 2^{-(k - 1)/k} (\sum_{v \in V} \delta_1(v)^{1/(k-1)})^{(k - 1)/k},$$

the theorem being proved.

COROLLARY. If G is a regular graph of the degree $r(G)$ and with an odd girth $2k + 3$ ($k \geq 2$) or greater, then

$$\alpha(G) \geq 2^{-(k - 1)/k} n^{(k - 1)/k} r(G)^{1/k}.$$

Proof. It follows, immediately, from Theorem 2.

Remark. Marcu [3] presents an algorithm with a computer program which for a given graph G finds all its maximal independent sets and the exact value of $\alpha(G)$.

Acknowledgements

I wish to express my gratitude to the referees for their useful suggestions and interest concerning this paper.

References