Biodegradation of dl-synephrine: A novel pathway in Nocardia sp DM1

SATYANARAYANA GANAPATHI RAJU* AND C.S. VAIIDYANATHAN
Enzymology and Plant Biochemistry Laboratory, Department of Biochemistry, Indian Institute of Science, Bangalore 560 012. India.

Received on November 18, 1985.

Abstract

Several organisms were tested for their ability to degrade dl-synephrine. One soil pseudomonad and a Nocardia sp have been found to efficiently utilise the compound. Nocardia sp degraded synephrine by two novel routes; one involving monoamine oxidase and the other involving conversion to p-hydroxyphenyl-acetaldehyde by the synephrinase enzyme. The p-hydroxyphenyl-acetaldehyde was converted to p-hydroxyphenylacetic acid and finally to 2,5-dihydroxyphenylacetic acid which underwent ring fission between C1 and C2 atoms. The monoamine oxidase converted synephrine to p-hydroxymandelaldehyde which was finally oxidised to 3,4-dihydroxybenzoic acid through the intermediate formation of p-hydroxymandelic acid, p-hydroxybenzaldehyde and p-hydroxybenzoic acid. 3,4-Dihydroxybenzoic acid was cleaved by an oxygenase through an orthofission. The route involving synephrinase was the major degradative pathway. However, the two pathways were found to operate simultaneously.

Key words: Citrus plant, degradation, 2,5-dihydroxyphenylacetic acid, p-hydroxyphenylacetic acid, Nocardia sp, phytotoxicity, synephrine.

1. Introduction

Synephrine [p-hydroxy-α-(methylamino)methyl] benzyl alcohol], a well-known sympathomimetic amine, is structurally related to epinephrine and is present in high concentrations in Amaryllidaceae and Rutaceae plants1-3. It accumulates to an enormous amount of 2 g/kg (fresh weight) in the leaves of Citrus reticulata (Tangerine and cleopatra mandarin varieties)3. A pathway was proposed for the biosynthesis of synephrine in citrus4 and the metabolic relationship of synephrine with other phenolic compounds in animals was established5,6. Phenolic amines with no demonstrable role in plants apparently are not metabolised and reach the soil with the senescent leaves. It is known that phenolics in general and phenolic amines in particular, if accumulated in soil in considerable amounts, are phytotoxic and result in decreased crop yield. "Soil sickness" of apple and peach orchards are examples of such situation7. At present our
understanding of the role of phenolic amines in animal metabolism and their function in plant systems is fragmentary, and little is known about their mode of disposal and degradation in nature. So far, there has been only one report on the degradation of synephin by a pathway involving p-hydroxyphenylacetaldehyde, p-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid as intermediates. The diversity one finds in the metabolic pathways in microorganisms prompted us to look for the degradation of synephin in other microbial systems. We have screened a number of organisms for their ability to utilise dl-synephin as the sole carbon and energy source. A soil pseudomonad and a Nocardia sp were found to efficiently utilise synephin. In the present communication, two novel pathways that operate in the degradation of synephin in the Nocardia sp are discussed.

2. Materials and methods

2.1. Chemicals

All the biochemicals were purchased from Sigma Chemical Co., except p-hydroxybenzaldehyde which was procured from Koch-Light Laboratories, England. The stock solution of dl-synephin was prepared by dissolving 25 g of the chemical in a small amount of 1M HCl and the volume was made up to 500 ml after neutralising with 1M NaOH. The solution was filter-sterilized and stored at 4°C.

2.2. Growth of the organism

A bacterial strain was isolated from the effluents of the organic chemistry laboratories at the Institute which could degrade several aromatic compounds including dl-synephin. The organism was identified to be a species of Nocardia according to Bergey’s Manual of Determinative Bacteriology. This organism will be referred to in the text as Nocardia sp DM1. The organism was grown on the following nutrient medium. Sucrose 10 g; glucose 5 g; peptone 4 g; yeast extract 1 g; calcium nitrate 0.5 g; Na2HPO4.12H2O 3 g; KH2PO4 0.3 g; NH4Cl 0.2 g; MgSO4.7H2O 0.2 g; FeSO4.7H2O 0.5 g and 5 ml of the trace element solution containing MnSO4.H2O 3 mg; ZnSO4.7H2O 10 mg; CuSO4.5H2O 1 mg; Na2MoO4.2H2O 1 mg and H3BO3 2 mg; distilled water 1000 ml, pH 7.2. The stock cultures were maintained on the same medium containing 2% agar and preserved at 4°C.

A five millilitre preculture after 36 h of growth from the above medium was transferred to 200 ml of the following induction medium. Yeast extract 0.5 g; dl-synephin 2 g and 5 ml of the trace element solution as mentioned above, distilled water 1000 ml, pH 7.2. The organism was grown at 30°C on a rotary shaker (120 rev./min) and the cells that were harvested at 12 h were used for metabolic and enzymatic studies.

2.3. Utilisation of dl-synephin

During growth period: The organism was grown for 30 h in the induction medium. During the growth period, the utilisation of synephin was checked by taking the culture
supermatants at regular intervals. The optical density (OD) was recorded at 290 nm which is the λ_{max} for synephrine in a Shimadzu UV-190 spectrophotometer against water blank.

By washed cell suspensions: Equal amount (1 g) of induced (grown on synephrine) and uninduced (grown only on yeast extract) cells were washed and incubated separately with 100 ml of 50 mM sodium phosphate buffer, pH 7.0 containing 100 mg of synephrine. At 30 min intervals, samples were drawn from the flasks and synephrine was estimated as mentioned above.

Oxygen uptake studies: The synephrine-grown cells were suspended in 0.05M sodium phosphate buffer (pH 7.0) to give a concentration of 30 mg (wet weight)/ml.

Oxygen uptake by the whole cells was measured at 30°C in a Gilson respirometer in the presence of 5 μmol of the aromatic substrate as described by Haribabu and Vaidyanathan.

2.4. Isolation and identification of the metabolites

At different times during growth period, the culture filtrates were analysed for metabolites by acidifying to pH 2.0 with 1M HCl and extracting twice with equal volume of peroxide-free ether. The combined ether layers were subjected to the fractionation procedure of Abitha Devi et al. The neutral and acidic fractions thus obtained were dried over anhydrous sodium sulphate and evaporated in vacuo. The residues were dissolved in a small amount of ether and were subjected to paper and thin-layer chromatography (TLC). The metabolites were identified by comparing their R_f values and colour reactions with those of authentic compounds. The individual products were isolated from paper and TLC plates by eluting with ether. After evaporating the ether, the residues were dissolved in 95% ethanol and UV spectra were recorded in Beckman model-26 double-beam spectrophotometer. Infrared spectra of the metabolites were recorded in nujol mull in Perkin-Elmer 580 IR spectrophotometer.

5. Enzyme assays

Cell-free extract of the organism was prepared by sonicating the cell suspension in 0.05M phosphate buffer, pH 7.0 (1:3 w/v) for 10 min and the homogenate was centrifuged at 7,000 g for 15 min and the supernatant was used as the crude extract. All these operations were carried out at 0-4°C.

Synephrinase enzyme catalyses the conversion of synephrine to p-hydroxyphenylacetalddehyde and methylamine. It was assayed following the formation of p-hydroxyphenylacetaldehyde according to the method of Abitha Devi et al. Protocatechuate dioxygenase was assayed by following the disappearance of protocatechuate by the method of Nair and Vaidyanathan as described previously. Similarly, omprotocatechuate dioxygenase was assayed following the disappearance of homoprotocatechuate as mentioned above. p-Hydroxymandelic acid oxidase (decarboxylating)
was assayed according to the method of Bhat et al13 by monitoring the product, p-hydroxybenzaldehyde. p-Hydroxymandelic acid dehydrogenase and p-hydroxybenzoylformic acid decarboxylase was assayed according to the methods of Kishore et al14.

The following enzymes were assayed polarographically using Gilson oxygraph and all the reactions were performed in 0.05M sodium phosphate buffer, pH 7.0 (120 μmol). In every enzyme assay, the total reaction mixture was 1.2 ml which included 0.1 ml of the crude extract and the individual reaction mixture composition is as follows: Monoamine oxidase – dl-synephrine 0.4 μmol; p-hydroxyphenylacetae-1-hydroxylase. – p-hydroxyphenylacetate 0.4 μmol and NADH 0.4 μmol; 2,5-dihydroxyphenylacetate, – 1,2-dioxygenase. – 2,5-dihydroxyphenylacetate 0.4 μmol; p-hydroxybenzoate-3-hydroxylase. – p-hydroxybenzoate 0.4 μmol, FAD 0.02 μmol and NADPH generating system 0.1 ml (buffer 5μmol, NADP\textsuperscript+ 0.2 units, preincubated for 10 min at 30°C). Reactions were started by the addition of respective substrates and the endogenous oxygen consumption was subtracted from the total oxygen uptake at the end of the reaction. All the enzyme assays were carried out at 30°C.

The hydrogen peroxide formed in the cell-free extracts by the monoamine oxidase was monitored according to the method of Loschen et al15. The decrease in Scopolin fluorescence was measured in Perkin-Elmer spectrofluorimeter at 350 nm (excitation) and 460 nm (emission).

Protein was estimated in the cell-free extracts by the method of Lowry et al16. All the specific activities were expressed as n mole (substrate disappeared, or product formed) per min/ing protein.

The mode of protocatechuate ring cleavage was determined by the method of Stanier et al17.

3. Results and discussion

Of various organisms tested, only Mycobacterium smegmatis, Nocardia sp DMI, Aspergillus niger and a bacterial strain isolated from the soil by substrate enrichment culture were found to utilise synephrine as carbon and nitrogen source. Since Nocardia sp DMI and the bacterial isolate were found to grow best on synephrine, these two organisms were selected for detailed studies. The results obtained with the Nocardia sp DMI are presented in this paper.

The growth curve and the utilisation of dl-synephrine during growth period of Nocardia sp DMI is shown in fig. 1. The organism reached stationary phase in 24 h and consumed most of the synephrine added, within 30 h of growth.

3.1. Identification of the products of synephrine metabolism

The R_f values, colour reactions and $λ_{max}$ values of various metabolites isolated from the spent medium of Nocardia sp DMI at different times during growth period are given in Table I. UV and IR spectra of the metabolites were compared with those of the authentic compounds and were identified as p-hydroxyphenylacetic acid, 2,5-dihydroxyphenylace-
Fig. 1. Growth of Nocardia sp DMI on synephrine (●) and utilisation of synephrine during growth period (○).

Fig. 2. Respiratory activities of synephrine-grown Nocardia sp DMI. Synephrine (■), p-hydroxyphenylacetate (▲), 2,5-dihydroxyphenylacetate (●), p-hydroxymandelate (△), p-hydroxybenzoic acid (○), 3,4-dihydroxybenzoate (□). Endogenous respiration was subtracted.

Table 1
Properties of the metabolites formed from synephrine by Nocardia sp DMI

<table>
<thead>
<tr>
<th>Compound</th>
<th>R_f values(^+)</th>
<th>Colour reactions(^++)</th>
<th>UV maximum (nm) at</th>
<th>Identified as</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>0.43</td>
<td>0.75</td>
<td>Violet</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>0.85</td>
<td>0.76</td>
<td>Pale brown</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>0.28</td>
<td>0.82</td>
<td>Brick red</td>
<td>Middle chrome</td>
</tr>
<tr>
<td>IV</td>
<td>0.64</td>
<td>0.71</td>
<td>Purple red</td>
<td>Red</td>
</tr>
<tr>
<td>V</td>
<td>0.19</td>
<td>0.62</td>
<td>Red</td>
<td>Pale steel grey</td>
</tr>
<tr>
<td>VI</td>
<td>0.10</td>
<td>0.51</td>
<td>Pale steel grey</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^+\) Solvents: A: Isopropanol; Ammonia; Water (8:1:1 v/v); B: 2% Aqueous formic acid.
\(^++\) Reagents 1: Diazotized p-nitroaniline followed by 10% aqueous NaOH; 2: 2,4-Dinitrophenylhydrazine followed by 10% aqueous NaOH.
tic acid, \(p \)-hydroxymandelic acid, \(p \)-hydroxybenzaldehyde, \(p \)-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid.

3.2. Oxygen uptake studies

dl-Synephrine-grown cells of *Nocardia* sp DMI readily oxidized dl-synephrine, \(p \)-hydroxyphenylacetic acid, 2,5-dihydroxyphenylacetic acid, \(p \)-hydroxymandelic acid, \(p \)-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid (fig. 2). The oxygen uptake by the cells with the first three of these compounds was considerably higher than the rest of them. However, 3,4-dihydroxyphenylacetic acid was not oxidised to any significant extent. The uninduced cells oxidized only synephrine but could not oxidize any of the other metabolites.

3.3. Utilisation of dl-synephrine by washed cell suspensions

The utilisation of synephrine by the induced and uninduced cells of the *Nocardia* sp DMI is shown in fig. 3. The induced cells utilised synephrine immediately after transferring into buffered synephrine solution (fig. 3). However, the uninduced cells did so only slowly without any lag. These observations suggest that the synephrine metabolising enzymes are constitutively present in relatively low quantities in this organism.

3.4. Enzyme activities in the cell-free extract

Cell-free extracts of synephrine-grown cells showed very high enzyme activities of synephrinase, \(p \)-hydroxyphenylacetate-1-hydroxylase and 2,5-dihydroxyphenylacetate 1,2-dioxygenase whose specific activities were respectively 34, 105 and 291, while the

![Graph showing utilisation of synephrine by washed cell suspensions of *Nocardia* sp DMI. Synephrine-grown (induced) cells (●), yeast extract-grown (uninduced) cells (○).]
enzymes, monoamine oxidase, p-hydroxymandelate oxidase (decarboxylating), p-hydroxybenzoate-3-hydroxylase and protocatechuate dioxygenase were at very low levels having specific activities 15, 11, 17 and 13 respectively. We could not demonstrate 3,4-dihydroxyphenylacetate dioxygenase activity in the cell-free extract of the induced cells. Interestingly, only the monoamine oxidase (MAO) activity could be detected in the cell-free extract of the uninduced cells.

Based on the results of the above studies, two pathways have been proposed for the degradation of dl-synephrine by the Nocardia sp DMI (fig. 4). It is known that in animal systems, monoamine oxidase converts catecholamines to the corresponding aldehydes which are subsequently oxidized to the respective acids. It has been suggested that monoamine oxidase may also convert synephrine to p-hydroxymandelaldehyde by a similar reaction. However, an unidentified Arthrobacter converted synephrine to p-hydroxyphenylacetaldehyde by a novel enzyme, synephrinase, in contrast to the possible conversion to p-hydroxymandelaldehyde.

Interestingly, in Nocardia sp DMI, two different pathways were operating simultaneously (fig. 4) which are entirely different from the previously reported pathway in an unidentified Arthrobacter. dl-Synephrine was converted to p-hydroxyphenylacetaldehyde by synephrinase which was immediately oxidized to p-hydroxyphenylacetic acid. Finally, p-hydroxyphenylacetate was hydroxylated to 2,5-dihydroxyphenylacetic acid by p-hydroxyphenylacetate-1-hydroxylase, presumably involving an 'NIH' shift as evident from the positions of the two hydroxyl groups in the product. This reaction is in contrast to the previously mentioned reactions in Arthrobacter synephrinum, Pseudomonas putida, Eschericia coli and Acinetobacter sp where p-hydroxyphenylacetic acid is converted to 3,4-dihydroxyphenylacetic acid without any 'NIH' shift. The conver-

![Diagram](image-url)

Fig. 4. Proposed pathways for the degradation of synephrine by Nocardia sp DMI. I, synephrine; II, p-hydroxyphenylacetaldehyde; III, p-hydroxyphenylacetic acid; IV, 2,5-dihydroxyphenylacetic acid; V, p-hydroxymandelaldehyde; VI, p-hydroxymandelic acid; VII, p-hydroxybenzaldehyde; VIII, p-hydroxybenzoic acid; IX, 3,4-dihydroxybenzoic acid.
sion of \(p \)-hydroxyphenylacetic acid to 2,5-dihydroxyphenylacetic acid has also been reported in Nocardia spec 43251 by Engelhardt et al\(^{24} \). The ring cleavage of 2,5-dihydroxyphenylacetate took place between \(C_1 \) and \(C_2 \) atoms of the benzene nucleus as indicated by the formation of maleyl-acetoacetate. A constitutive nonspecific amine oxidase, possibly an MAO, which was present both in the induced and uninduced cells of Nocardia sp DMI converted dl-synephrine to \(p \)-hydroxymandelic acid. This reaction is similar to the one reported for tyramine degradation by Aerobacter aerogenes ATCC 9621\(^ {15} \). The presence of MAO was also evident from the stoichiometric formation of hydrogen peroxide in the cell-free extracts of induced and uninduced cells. This enzyme accounts for the slow utilisation of synephrine by the washed uninduced cells without any initial lag period (fig. 3). In contrast to the previous reports of the oxidation of \(p \)-hydroxymandelic acid to \(p \)-hydroxybenzaldehyde with an intermediate formation of \(p \)-hydroxybenzoylformic acid in Pseudomonas\(^ {26,27} \), in Nocardia sp DMI, \(p \)-hydroxymandelic acid was directly converted to \(p \)-hydroxybenzaldehyde by \(p \)-hydroxymandelate oxidase (decarboxylating). A similar enzyme was reported previously from Pseudomonas convexa by Bhat et al\(^ {13} \). When we incubated the whole cells with \(p \)-hydroxymandelic acid, we could not detect any \(p \)-hydroxybenzoylformic acid in the spent medium. Also, we were unable to demonstrate the activities of \(p \)-hydroxymandelate dehydrogenase and \(p \)-hydroxybenzoylformic acid decarboxylase in the cell-free extract of the induced cells. Possibly, \(p \)-hydroxymandelic acid directly gets converted to \(p \)-hydroxybenzaldehyde without the intermediate formation of \(p \)-hydroxybenzoylformic acid. \(p \)-Hydroxybenzaldehyde was immediately oxidized to \(p \)-hydroxybenzoic acid. Finally, this acid was ring-cleaved by an oxygenase involving orthofission as indicated by Rothera’s test\(^ {28} \).

These results show that dl-synephrine was catabolised by Nocardia sp DMI in two different novel pathways operating simultaneously. We checked for the interconversion of \(p \)-hydroxyphenylacetate to \(p \)-hydroxymandelic acid as reported by Kishore et al\(^ {14} \) in Aspergillus niger to see if these two pathways were connected at this point. We could not observe the formation of \(p \)-hydroxymandelic acid from \(p \)-hydroxyphenylacetic acid either in the whole cells or in the cell-free extract. Hence, it is unlikely that the two pathways are interconnected via \(p \)-hydroxyphenylacetic acid and \(p \)-hydroxymandelic acid. The major degradative pathway of dl-synephrine in this organism is through 2,5-dihydroxyphenylacetic acid, though synephrine was metabolised to a minor extent by the pathway involving MAO as the first enzyme. This conclusion is further strengthened by the fact that the enzymes of the MAO pathway were present at very low levels in the induced cells.

Acknowledgements

SGR is grateful to Dr. Debkumar Mitra for generous gift of the bacterium. He is also thankful to Dr. Nayeem U. Khan for useful discussions.
BIODEGRADATION OF dl SYNEPHRINE IN NOCARDIA SP DMI

References

Protein measurement with the folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275.

17. Stanier, R.Y., Palleroni, N.J. and Doudoroff, M.

18. Leeper, L.C., Weissharch, H. and Unrufriend, S.

20. Barbour, M.G. and Bayly, R.C.

22. Cooper, R.A. and Skinner, M. A.

23. Sparrnins, V.L., Chapman, P.J. and Dagley, S.

24. Engelhardt, G., Rast, H.G. and Wallnöfer, P. R.

25. Harada, T.

26. Gunter, S.E.

27. Stanier, R.Y.

28. Rothera, A.C.H.

Note on the sodium nitroprusside reaction for acetone, J. Physiol., 1908, 37, 491–494.